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Abstract

Accurately predicting air pollutant concentration remains challenging but essen-
tial in preventing the public from being exposed to high concentrations that lead
to several hundred thousand premature deaths across Europe yearly (European
Environment Agency, 2023).

This research focuses on enhancing hourly regional pollutant forecasts in local
urban environments using machine learning (ML). To achieve this, a data set
was collected, harmonized, and preprocessed to represent eleven major German
cities that served as the basis for answering the research question. The ability to
predict PMs 5 and NOs at a target location with and without corresponding local
measurements at that point was evaluated for several employed ML algorithms.
Incorporating measurements at the designated sites enabled the locally implemented
ML algorithms to diminish the error in the regional forecast by 29.77% and 44.99%
for PMy 5 and NOs, respectively. Even in the absence of measurements, a notable
reduction in error by 15.14% and 18.71% compared to the regional forecast was
evident at the target location.

Thus, the presented study shows how valuable locally employed ML algorithms
can be to enhance regional forecasts in urban environments, suggesting that these
proposed methods can help warn the citizens about estimated high concentrations
if operational.
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Zusammenfassung

Das akkurate Vorhersagen von Luftschadstoffen bleibt eine anspruchsvolle aber
wichtige Aufgabe zur Vermeidung der Exposition von Menschen gegentiiber hohen
Schadstoffkonzentrationen, die jahrlich zu mehreren Hunderttausend vorzeitigen
Todesfillen in Europa fithren (European Environment Agency, 2023).

Die vorliegende Studie fokussiert sich auf die Verbesserung von regional Vorher-
sagen der stiindlichen Schadstoffkonzentration im lokalen, stadtisch gepragten Raum
mithilfe von maschinellem Lernen (ML). Hierfiir wurde ein Datensatz akquiriert,
harmonisiert und vorverarbeitet, um elf grofie Stédte in Deutschland zu représen-
tieren, welche als Grundlage zur Beantwortung der Forschungsfrage dienten. Auf
diesem Datensatz wurde die Fahigkeit verschiedener ML-Algorithmen fiir die Vorher-
sage von PMs 5 und NOs an einem bestimmten Punkt mit und ohne den dortigen
Messungen evaluiert. Die Einbeziehung von Messungen an den festgelegten Stan-
dorten ermoglichte es den lokal implementierten ML-Algorithmen, den Fehler in der
regionalen Vorhersage um 29,77% bzw. 44,99% fiir PMs 5 und NOy zu reduzieren.
Selbst in Abwesenheit von Messungen war eine bemerkenswerte Fehlerreduktion
um 15,14% bzw. 18,71% im Vergleich zur regionalen Vorhersage am Zielort evident.

Die vorliegende Studie verdeutlicht den Wert lokal eingesetzter ML-Algorithmen
fiir die Verbesserung regionaler Vorhersagen im urbanen Umfeld und legt hierdurch
nahe, dass die vorgeschlagenen Methoden, falls operationell, dazu beitragen, Blrger
besser vor hohen Luftschadstoffkonzentrationen warnen zu kénnen.
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Chapter

Introduction

According to the World Health Organization, 2022, air pollution is defined as
any biological, chemical, or physical agent that contaminates indoor or outdoor
environments by modifying the attributes of the atmosphere. The five most harmful
air pollutants for human health and the environment named by the World Health
Organization (WHO) are particulate matter (PM ), ground-level ozone (Os), carbon
monoxide (C'O), nitrogen dioxide (NOs), and sulfur dioxide (SO,). The particular
matter is an inhalable mixture of different particles, which can be further subdivided
into particulate matter with a diameter < 10ug/m? (PMj,) and fine particulate
matter with a diameter < 2.5ug/m?* (PMs,5). Primarily, the latter is known to
have a severe impact on human health, resulting in 238.000 premature deaths in
2020 among the population of the 27 European Union Member states, making it
the most significant individual environmental health hazard in the European Union
(European Environment Agency, 2023). Familiar sources of air pollutants are motor
vehicles, industrial processes, forest fires, and volcanic activities. One crucial factor
for all pollutants is the concentration in the air, which can be measured using
ground-level sensors or estimated via satellite imagery. Predicting future pollutant
levels could lower the risk of exposure to high concentrations of these pollutants
or take measures to reduce the concentration. The danger from exposure can be
divided into short- and long-term exposures. While the air pollutant concentration
has to be considerably higher for short-term exposure to be harmful, already
relatively low pollutant concentration can have a similar effect on a long-term basis
(World Health Organization et al., 2021).

The prediction of future air pollutants can roughly be divided into chemical
transport models (CTMs) that aims to model the atmospheric chemistry considering
a specific pollutant species and statistical models that learn from experience to
estimate the pollutant concentrations. While CTMs are also applied to regional
scenarios (Marécal et al., 2015), they are typically used on a larger scale by
modeling the advection (the movement of bulk) and diffusion (the movement or
dispersion inside the bulk) of the particles. Ground-level observations measure
the in-situ concentrations and are more suitable for capturing local trends. Often,
a high temporal resolution and more accurate measurements make the latter



2 Introduction

Table 1.1: The table shows the ranges for the air quality indices. All values correspond to
a daily average pollutant concentration of pg/m3. From top to bottom, the AQI defined
by the EEA is Good, Moderate, Poor, Very Poor, and Extremely Poor. For each index,
a suggestion of how to behave is given.

AQI PM,s PMy, NO, O; SO,
Good 0-10  0-20 0-40 0-50  0-100
Fair 10-20  20-40  40-90  50-100  100-200
Moderate 20-25  40-50  90-120 100-130 200-350
Poor 2550 50-100 120-230 130-240 350-500

Very Poor 50-75 100-150 230-340 240-380 500-750
Extremely Poor > 75 > 150 > 340 > 380 > 750

particularly interesting for the domain of statistical models or machine learning
(ML). Due to the complex nature of CTMs and the spatial relatively coarse
prediction resolution, the field of model output statistic (MOS) has been adapted
from weather forecasting systems to improve the prediction performance in local
environments by incorporating local measurements to correct the systematic bias
at the specific location.

Challenges in predicting exposures include the precise forecast of multiple time
steps ahead, e.g., hours for the short term and months or years for the long term at
a specific location. Another challenge is the forecast of an episode that represents
a sudden peak or drop in pollutant concentration, which rarely occurs. Various
protective measures can be taken depending on the short- or long-term exposure
scenarios. An immediate reduction in pollutant concentration can be achieved if,
for example, the traffic is redirected from a polluted area or a nearby power plant
is shut down (Boznar et al., 1993). Additionally, the population in the area can be
warned in advance of a rising pollutant concentration, giving them enough time
to leave or avoid the area. Long-term exposure estimation, for example, can be
helpful in urban planning so that new residential buildings are not placed into
areas that are estimated to be (or become) highly polluted (Frenkiel, 1956).

Table 1.1 shows the exposure risks to human health defined by the European
Environmental Agency (EEA) for the five primary pollutants. It additionally orders
the expected danger of the different pollutant species decreasingly from left to right.
While the table gives a good intuition of the impact of exposure on the public,
the WHO even defines lower values as more harmful. Recent studies analyzed the
correlation between pollutant concentration and premature death in low-exposure
environments. They concluded that even PM, 5 exposure below 3 g/ m3 increases
the risk of premature deaths (Brauer et al., 2022). Since the risks of air pollutants
to human health have already been known for many decades, the history of air



pollutant modeling dates back at least to the 1950s. In the following, a short
history of air pollutant modeling (and related literature) is given.

Frenkiel, 1956 analyzed the influence of different pollutant sources on the mean
main pollutant level in a 16-square-mile grid over Los Angeles County. The
pollutants are defined by the emission source, including two industrial plants, the
traffic density per grid, and the estimated number of private incinerators per grid.
A mathematical model is constructed that considers different meteorological factors
and estimates that the long-term development of air pollutant concentration nearly
doubled from 1954 to 1980. Boettger and Smith, 1961 classified the SO, and PM
concentration into four intensity levels for the next day, using a rule-based system
on the meteorological data. The highest accuracy is achieved for the winter season
with 63% for SO, and 60% accuracy for the PM concentration. Three years later,
Clarke, 1964 implemented a diffusion model based on Gaussian distribution to
estimate the NO, and SO, concentration at the city center by incorporating the
estimated pollutant sources of the neighboring area, and meteorological factors.
They showed that they could successfully predict the pollutant concentration at
the center.

The term MOS was first coined by Glahn and Lowry, 1972 in the domain
of weather forecast. The authors applied multiple linear regression using local
weather measurements as predictors (e.g., maximum temperature for the current
day) to improve the prediction of regional weather forecasting systems (e.g., max-
imum temperature) over the east united states of America (USA) by reducing
the systematic bias at the particular location. Motivated by the success of MOS,
Klein and Glahn, 1974 extended the approach and made it operational over the
entire USA by applying one multiple linear regression model for every station,
two seasons, and each objective. While Clarke, 1964 neglected the historical air
pollutant concentration at a particular target station, McCollister and Wilson, 1975
implemented a stochastic linear model that learned from the daily maximum or
the past 24 hourly average pollutant concentrations to predict the following daily
maximum or hourly average concentrations, respectively. The result outperformed
the forecast by human weather experts by a small margin while considering fewer
variables (e.g., meteorological factors).

To address the challenge of forecasting an episode (a rapid increase followed by
a rapid decrease of the concentration at the target location), Fronza et al., 1979
incorporated an advection-diffusion model extended with the Kalman prediction
for the real-time forecasting of SO concentration. As a result, while considering
different meteorological factors, the researchers accurately identified high pollu-
tant concentration episodes. One of the first implementations of artificial neural
networks (ANNs) to predict pollutant concentration at different locations was
investigated by Boznar et al., 1993. The research focused on predicting the SO,
concentration at different target sites around a thermal power plant 30 minutes
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ahead. Another research of neural networks was conducted by Comrie, 1997. A
comparison between ANNs and other regression models for 1-hour daily maximum
O3 forecasting was analyzed here. Additionally, the inputs included meteorologi-
cal factors and the previous day’s maximum Oj concentration. Contrary to the
researchers’ expectations, the ANN only slightly outperformed the multivariate
regression models. Another comparison by Gardner and Dorling, 1999 showed
that their implementation of the ANN outperformed the more traditional linear
regression models in predicting the hourly NO, and NO, concentration for London
in all experiments. The suggestion that more complex models like neural networks
outperform linear regression models was also underlined two years later by Elkamel
et al., 2001.

One of the earliest research that applied MOS to improve CTMs in the urban
area of Paris was conducted by Blond et al., 2003. The authors tested different
setups with and without using the CTM prediction as an additional predictor.
They successfully applied a kriging method (Cressie, 1993) to interpolate spatial
dependencies of pollutant concentration from local observation by incorporating
the forecast of the CTM, resulting in an estimate of the error field of the CTM
that can be used to correct the systematic bias over the region and improve the
prediction performance of O3 in that area. They concluded that incorporating the
CTM prediction into the model provided valuable information, especially in sparse
ground-level measurement networks.

Aldrin and Haff, 2005 implemented generalized additive models to forecast
PMs 5, PMyy, NOs; and NO, separately and included additionally the number of
passing motorised vehicles at the measurement sites into their model. Yildirim
and Bayramoglu, 2006 predicted the daily pollutant concentration of SOy and PM
by utilizing an adaptive neuro-fuzzy model and achieved an root mean squared
error (RMSE) of 30 ug/m? for PM for a winter season. Wilczak et al., 2006 used
MOS to improve the performance of a multi-model air quality forecast ensemble
that predicted O3 in North America. They employed a simple 7-day running
mean bias correction for each station and predicted each hour of the day, showing
that this achieves the highest performance of individual and ensemble forecasts.
They additionally note that the highest bias correction of the individual hours is
achieved during the past day. Another implementation of MOS was performed by
Honoré et al., 2008, which examined an operational forecasting system of O3 in
France. They estimated the bias of the prediction at each site for every hour to
interpolate it over the spatial dimension by using the kriging method described
in Blond et al., 2003. An implementation of an Elman network for predicting
the next hourly pollutant concentration was incorporated by Prakash et al., 2011.
The researcher preprocessed the data using a wavelet-transform and reported an
mean absolute error (MAE) of 6.52 pg/m? for the next hours PM, 5 prediction.
Feng et al., 2015 investigated another wavelet transformation-based approach. The
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authors additionally included and transformed the air mass trajectories to predict
the daily average PMs; 5 concentration two days in advance at multiple locations.
They achieved an average daily MAE of 12.31 ug/m?® PM, .

Today, CTMs, local statistical models, and MOS are still successfully applied
to estimate future pollutant concentration. For example, the established air
pollution forecast model for Europe is based on a median ensemble of different
CTMs, predicting each day the next 96 hours for different pollutants at a spatial
resolution of 0.1° lati- and longitude (corresponding to approximately 10 km? )
for a grid over Europe (Marécal et al., 2015). The hourly forecast includes ten
different pollutant concentrations, and the performance between the individual
models varies in different scenarios. Since the computational cost is relatively
high for today’s standard, the predictions are available approximately 8 hours
after the calculation starts. Apart from forecasting a gridded area, predicting
the future pollutant concentration at a specific station is performed extensively
throughout literature and used by the EEA to inform the public about future
pollution concentration levels (EEA, 2023). Even though some of the recent research
combines the regional forecast with in-situ measurements over Europe by applying
ML algorithms (Bertrand et al., 2023), the performance of this combined method
has not yet been assessed for multiple urban environments in Germany. This
research is going to answer this question from different perspectives.

1.1. Aim and Objectives

This research aims to evaluate the performance of local and regional approaches
to improve regional forecasts and find the most suitable algorithms to forecast the
next 23 hours of target pollutants in multiple German urban environments.

To achieve this, comparable literature is reviewed to identify information relevant
to the research aim, including expectations on the underlying data set, data
preparation, the algorithms for the prediction, and how to measure and compare
the success of the different predictions. For comparison, two suitable pollutants
that serve as targets are additionally chosen. In the next step, the gained knowledge
are used to collect and prepare a suitable data set and implement feasible local
ML algorithms identified during the literature review. Since the collected data
set diverges from the ones proposed in the literature, the hyper parameters (HPs)
of each identified ML algorithm is optimized. To assess the performance of the
different ML algorithms, three different scenarios are evaluated. First, similar
to Bertrand et al., 2023, the prediction at a specific target station is examined.
Here, the regional forecast is compared against the local prediction. Second, it is
evaluated if this forecast can be improved by incorporating the measurements of
neighboring in-situ stations. The third scenario answers the question of whether the
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prediction of the target pollutant can be improved if only neighboring stations are
included without utilizing the historical in-situ observations at the target location.
How to fuse the predictions of the neighboring stations is also be evaluated. All
three scenarios are performed with and without the regional forecast to assess the
influence.

1.2. Contribution of the Work

Even though MOS has already been applied in the context of air pollutant
forecast (Bertrand et al., 2023; Blond et al., 2003; Honoré et al., 2008; Wilczak
et al., 2006), none of the researchers evaluated ML to improve the regional forecast
in urban environments, more particularly in several major German cities. While
Blond et al., 2003 and Honoré et al., 2008 model the error or systematic bias of
the regional forecast of O3 by inter- or extrapolating the error over the spatial
dimension using kriging, these researches do not utilize ML to populate the error
surface. They might be unable to capture the pollutant concentrations more
affected by local factors. Wilczak et al., 2006 relied on a simple bias correction of
the regional forecast across the USA by calculating the running mean error of the
seven days, also without applying ML algorithms and not particularly for urban
environments. Bertrand et al., 2023, on the other hand, recently applied MOS
using ML, at hundreds of sites across Europe. However, this research does not
evaluate the improvement of the regional forecast in a local urban environment,
nor does it consider the spatial dependencies between the stations.

Since most people in Europe live in cities, for example, 77.7% of the population in
Germany (destatis, 2023), knowledge about how to accurately predict air pollutants
can be performed in urban environments is particularly important. Therefore, this
study aims to fill this gap across multiple major cities in Germany. If the research
yields promising results, the identified methods could be implemented across cities
to automatically improve the regional forecasts locally, enhancing the short-term
warning capability for the public.



Chapter

Literature Review

The following chapter presents past and current research, outlining the state-
of-the-art for air pollutant prediction. The section aims to categorize the relevant
information from the revised articles into the steps that must be implemented
to answer the overall research question. Because of its crucial importance to
the successful implementation, the data sources the different studies build on are
presented in Section 2.1. The available data is often preprocessed or preselected
to enable or simplify the learning process for the different machine learning (ML)
algorithms, and therefore presented in the following Section 2.2 and Section 2.3,
respectively. When the data is ready, it can be fed to the proposed algorithm
so that the different vital contributions of the revised studies are presented in
Section 2.4. The performance of the trained ML algorithms can be evaluated in
multiple ways. A revision of how several authors approached this challenge can be
found in Section 2.5.

2.1. Data sets

This section presents the various input data the researchers employed in their
studies. In addition, information about the temporal and spatial resolution is
provided, as well as the time span of the data and supplementary information.

Ground-level pollutant measurement stations are the essential source for predict-
ing future exposure levels. They measure the accumulated pollutant concentration
of different harmful gases, primarily measured in micrograms per cubic meter
(ug/m3) or parts per billion (ppb). Given the molecular weight of the pollutant,
the temperature, and the air pressure, the units can be converted interchangeably,
except for particulate matter (PM), because the composition of different molecules
varies and might, therefore, be unknown. In addition, meteorological factors like
wind speed, rainfall, and temperature highly influence the distribution and disper-
sion of the different pollutant concentrations. Table 2.3 gives an overview of the
most common input variables used to predict future air pollutants in the different
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Table 2.1: Overview of the different input variables. While all authors used PMs 5 and
most meteorological data, some incorporated the other pollutant concentrations and few
NOsy and NO,

Article Metcorological -, pare €O NO NO, NO, 05 SO,
data
Zheng et al., 2015 v v v v v v v
X. Lietal., 2017 v v
Kleine Deters et al., 2017 v v
Biancofiore et al., 2017 v v v v
Huang and Kuo, 2018 v v
Liang et al., 2018 v v v v v v v
Tao et al., 2019 v v
Zhao et al., 2019 v v v v v v
Du et al., 2019 v v v v v v
Qiao et al., 2019 v
Qin et al., 2019 v v
Zhou et al., 2019 v v v v v v v v v
Castelli et al., 2020 v v v v v v
Chang et al., 2020 v v v v v v v v v
Zhang et al., 2021 v
Zeng et al., 2022 v v
Jin et al., 2022 v v
Akbal and Unlii, 2022 v v v v v v v v
Saez and Barceld, 2022 v v v v v
Tian et al., 2022 v v v v v v

studies.

Besides the input variables shown in Table 2.1, the authors included additional
features in their data set. One example is to incorporate time-related features,
e.g., the hour of the day, the day of the week, or the month of the year (Castelli
et al., 2020; Kleine Deters et al., 2017; Liang et al., 2018; Zhao et al., 2019).
These features enable the models to learn recurring patterns in the data. Other
studies included the pollutant concentrations of neighboring stations to predict the
target stations’ future pollutant concentration (Jin et al., 2022). Incorporating the
prediction of chemical transport models (CTMs) (more specifically, the ensemble
forecast of Copernicus Atmospheric Monitoring Service (CAMS)) to improve the
local predictions is evaluated by Bertrand et al., 2023.

The number of analyzed ground-level stations dramatically varies from a single
station (e.g., Castelli et al., 2020) to multiple thousand stations (e.g., Zheng et al.,
2015). Also, the underlying data sets’ time range varies from half a year (Castelli
et al., 2020) to 10 years (Saez and Barceld, 2022). The sampling frequency of the
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Table 2.2: Overview of the different satellite-based input variables. Displayed are the
MF, the AOD, the NDVI and the CTM data.

Article MF NDVI CTM
Hu et al., 2017 v v v
T. Li et al., 2017 v v v
Di et al., 2019 v oV v v
X. Meng et al., 2021 v v v
Zamani et al., 2019 v
Muthukumar et al., 2021 v

ground-level pollutant concentration measurements is mostly hourly and in some
cases daily (Biancofiore et al., 2017; Kleine Deters et al., 2017).

Apart from ground level measurements, it is also possible to estimate ground
pollutant concentration (in particular fine particulate matter with a diameter
< 2.5ug/m? (PMsys)) from satellite images. For example, the most commonly used
aerosol optical depth (AOD) measurements are recorded with the Moderate Resolu-
tion Imaging Spectroradiometer of the Earth Observing System. The measurement
products most relevant in estimating surface PMs; 5 concentrations are 470nm and
550nm (Di et al., 2019). The data availability of satellites is sparse and influenced
by multiple factors. First, one orbit of a corresponding satellite takes approximately
two days, depending on the satellite’s distance to Earth. Additionally, factors that
cause missing data are, for example, cloud cover, snow, and high uncertainty (Di
et al., 2019). Therefore, some authors use CTM to interpolate the missing values.
As additional inputs, other satellite images, e.g., the meteorological fields (MF) or
the normalized difference vegetation index (NDVI), a measure of the amount of
vegetation for remote sensing, are employed. Table 2.2 gives an overview of data
sets that estimate the ground-level pollutant concentration over an area.

Multiple authors also included various land use variables for each estimated grid
cell. The most common were local road cover, forest cover, and population density.
The grid cells’ spatial resolution varied from 1km? (Di et al., 2019) to 12km? (Hu
et al., 2017). The period for the underlying data set ranged from one year (Hu
et al., 2017) to 15 years (Di et al., 2019). Since the prediction of surface pollutant
concentration can be verified via comparison with ground-level stations, many
researchers include them in their data set. The number of ground-level stations
significantly differs from under 20 (Muthukumar et al., 2021) to over 2000 stations
(Di et al., 2019).

In this section, a variety of possible predictors were presented. They can mainly
be categorized into historical pollutant concentration measurements, meteorological
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factors, and supplementary information, such as time features, population density,
and elevation. The choice of the data set and the utilized input variables are crucial
for predicting air pollutant concentration. The size of the data set additionally
plays an important role. It has been shown that while some researchers build their
research on a single pollutant time series, others rely on multiple pollutants and
ground-level measuring stations. In particular, the studies incorporating AOD data
to predict ground-level pollutant concentration utilized more ground-level stations
in their research. Also, the time interval in which the data set was recorded differs
from six months to decades. The next section presents an overview of different
preprocessing techniques to modify the data.

2.2. Data preprocessing

Raw input data often requires additional preprocessing before it can be handled
meaningfully or more efficiently by learning algorithms. One example of air pollu-
tant prediction is categorical meteorological variables like names (e.g., “cloudy”).
Another example is that, for some learning algorithms, all numerical input variables
should lie on the same scale so that they are not weighed differently according to
their magnitude. Various other preprocessing methods exist, some of which are
presented below. There are different approaches to handle missing data in the time
series. In comparison, some authors imputed the missing time steps of ground-level
sensors by linear interpolation (Akbal and Unlii, 2022; Jin et al., 2022; Zhao
et al., 2019), and others used the mean value (Tian et al., 2022) and the previous
valid value (Tao et al., 2019). Additionally, dropping the sample (Kleine Deters
et al., 2017), using the 2"¢ order polynomial (Castelli et al., 2020) or applying the
Akima smooth curve supplement method were used to interpolate missing values
(Chang et al., 2020). To impute the AOD data Di et al., 2019, trained a random
forest (RF) to predict the AOD value of a grid cell by using all other predictors
from the data set as input variables. The grid cells where the AOD data was
present served as ground truth. A tropospheric chemistry-driven model was applied
by Hu et al., 2017 to impute the missing AOD data. Many algorithms require
numerical input, whereas categorical features are often non-numeric. Additionally,
encoding categorical features ensures that the model can effectively learn patterns
and relationships within the data, improving the algorithm’s performance. In this
sense, one of the simplest method to transform categorical features is to apply the
one-hot encoding (X. Li et al., 2017; Liang et al., 2018; Zheng et al., 2015). Other
authors assigned an integer value to the different categories (Tao et al., 2019),
which might lead to a false representation if the underlying feature is not ordinal.
Castelli et al., 2020 showed one way to overcome this. The authors transformed the
time-related features using the sine and cosine (e.g., cos(2m xhour/24)) to reflect a
repeating pattern. Kleine Deters et al., 2017 calculated the sine and cosine from
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the wind direction, which was transformed from polar to Cartesian coordinates
and multiplied by the wind speed.

Different normalization and standardization techniques were performed to trans-
form the other input features on a similar scale. The input features were normalized
between either 0 and 1 or -1 and 1 (Huang and Kuo, 2018; Jin et al., 2022; X. Li
et al., 2017; Qiao et al., 2019; Tian et al., 2022) by some authors and standardized
by others (Chang et al., 2020; Tao et al., 2019; Zhou et al., 2019). In some cases,
outliers were dropped from the data set (Castelli et al., 2020; Kleine Deters et al.,
2017). For instance, Castelli et al., 2020 identified the most relevant time lags (past
time steps) via auto-correlation. The authors additionally applied the Yeo-Johnson
transformation to convert the data and make it more robust against abnormal
observations in the data set. Another transformation was performed by Zeng et al.,
2022. To capture different patterns in the data, they decomposed the signal into six
different sub-signals by calculating the extended stationary wavelet transform on
the input signal. To capture long- and short-term exposure Saez and Barceld, 2022
binned the data set into long-term exposure (monthly average) and short-term
exposure (daily average). Akbal and Unlii, 2022, on the other hand, averaged all
stations in one city to represent the overall pollutant level.

Zheng et al., 2015 implemented a more complex preprocessing approach. Based
on a specific target station, the neighboring stations were accumulated in grid
cells corresponding to direction and distance. For example, in eight directions, the
closest considered circle is 30km, and the furthest is 300km away. Grid cells that
do not include monitoring stations were not considered. The pollutant levels and
meteorological factors were averaged for all other cells over stations in them. If the
ground-level measurements were provided hourly, all authors modeling ground level
P M, 5 concentration from AOD data are averaging the hourly data at least to the
daily mean. Hu et al., 2017 additionally averaged the meteorological satellite data
over the lower tropospheric layers up to 20km per grid. Furthermore, they used
a convolutional neural network (CNN) model to weigh the spatial relationship of
neighboring grid cells and used the output as an additional predictor. T. Li et al.,
2017 performed another approach of weighing neighboring cells. The authors used
a distance measure to restrict the network’s input to neighboring cells or time steps
with decreasing influence that falls inside a fixed threshold. This section presented
research covering different approaches to handling the input data. Although some
of the most common techniques for imputing or normalizing the data have been
identified, the specific preprocessing steps often depend on the use case. Overall,
the preprocessing steps of the data sets containing AOD and other satellite images
were more complex.
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2.3. Selection of input variables

Selecting suitable input variables can reduce the amount of the input dimension
to simplify the prediction problem. One of the simplest ways of choosing the correct
predictors in literature is through literature references (Huang and Kuo, 2018; Zhao
et al., 2019; Zhou et al., 2019). While X. Li et al., 2017 performed a correlation
analysis between the PMs 5 values of 12 different stations to justify the spatial
relationship between them, Castelli et al., 2020; Mao et al., 2021; Tao et al., 2019
applied a correlation analysis by using a covariance matrix between the different
predictors and the feature importance. Akbal and Unlii, 2022 utilized another
feature importance technique. The authors used extra trees and random forests to
perform a backward selection to rank the input features and considered the first 15
as input for the models. A simple distance in kilometers was used as a threshold
to include PM, 5 and particulate matter with a diameter < 10ug/m? (P M) of
neighboring stations with a shorter distance than 50km as predictors. Stations
placed near an industrial area are added as input ad-hoc, even though the distance
is further than 50km away.

The authors of the revised literature provided rarely information on how the
input variables were chosen, either because no selection method was performed or
because it was not stated. Nevertheless, reducing the input dimension and selecting
relevant predictors is essential to air pollutant prediction.

2.4. Proposed model

This section includes the different algorithms to handle the preprocessed data
and predict future air pollutant concentrations. It focuses on how temporal and
spatial dimensions are merged and how this information is used to predict future
air pollutants. Starting from articles that investigate the prediction of pollutants
from one station, studies that consider the spatial relationship between stations are
revised, followed by studies that model the spatial grid over an area from satellite
data. A comparison among a linear regression model, a feed-forward neural network,
and an Elman network to predict the average P M, 5 concentration of up to three
days given the current time step was made by Biancofiore et al., 2017. Zhou et al.,
2019 utilized the Kendall Tau algorithm to rank the time lag (past time steps) of
neighboring stations to serve as input for a target location and predict the PM, 5
value up to 4 hours ahead using a support vector machine (SVM). Another SVM
was applied by Castelli et al., 2020 to separately predict different air pollutant
concentrations. Using model output statistic (MOS) Bertrand et al., 2023 trained
multiple ML algorithms including the linear regression, ridge regression, Lasso, RF
and gradient boosting regressor (GBR) to predict PM, 5, P My, nitrogen dioxide



Proposed model 13

(NO3) and ozone (O3) for a mean hourly or daily concentration at specific target
sites.

Akbal and Unlii, 2022; Mao et al., 2021; Zeng et al., 2022; Zhang et al., 2021, all
implemented a variation of the long-short term memory (LSTM) network to predict
future PMs 5 concentration. While Zhang et al., 2021 compared the model with
and without first decomposing the PMs 5 using the empirical mode decomposition,
Mao et al., 2021 proposed a sliding LSTM that takes the prediction of the last
time step as input to the current. Finally, Akbal and Unlii, 2022 compared the
proposed LSTM with feed-forward and convolutional layer combinations. To model
spatial and temporal relationships, Zheng et al., 2015 implemented an ensemble
consisting of four different methods. First, a linear regressor that modeled the local
trend from the past pollutant measurements and weather-related predictors of the
current time step to predict the change of PMs; 5 concentration at the target time
step. The second component used an artificial neural network (ANN) to capture
the global trend for a specific target station. To combine the local and global
trends, a decision tree regressor was trained to weigh both outputs dynamically for
the local weather variables. Since sudden drops in pollutant concentration were
rarely observed and not often reflected in the training data, the fourth component
was derived from the training data to recognize these events by defining simple
mathematical rules applied to the weather data. Each model was trained for
different cities and future time slots. For each of the first 6 hours, one ensemble
(considering local and global factors) was trained. For time ranges up to 25-48h,
individual models for the minimal and maximal PM, 5 concentration were trained
separately.

Given the meteorological data as input, Kleine Deters et al., 2017 predicted
the current day’s average PMs5 concentration. The performance of multiple
models was compared, including a Convolutional Generalization Model (CGM) that
incorporated the spatial relationship based on the wind speed and wind direction.
To predict the PM, 5 concentration of the next time steps, X. Li et al., 2017
used an LSTM to extract the time-dependent features of all air pollutant stations
simultaneously. Together with the meteorological data and the time features, the
output of the LSTM was fed into a fully connected layer that predicted the air
pollutant concentration of the desired time step for each of the 12 stations. The
authors trained individual models for each time step and combined the results to
predict multiple time steps in the future. Zhao et al., 2019 implemented a very
similar approach. The authors trained a separate LSTM for every 36 Stations
in Beijing. Afterward, a fully connected layered model was used to combine the
predictions of a station of interest and its four closest ones to forecast the target
locations’” PM, 5 concentration of the following real-valued 1-6 hours and the
minimal and maximal PM, 5 for the intervals 7-12, 13-24, 25-48 respectively.

Huang and Kuo, 2018 utilized a Convl1D-Net to extract the features per station
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and an LSTM to handle the temporal relationship between the extracted features.
Similarly, Du et al., 2019 and Tao et al., 2019 trained a 1D-ConvNet for every
station that extracted features for the current time step. The output of each
ConvNet was then concatenated into one representation and fed into a bidirectional
Gated Recurrent Unit (GRU) network to learn the temporal dependencies. Qin
et al., 2019 modeled a broader spatial relationship. In there research, a CNN was
trained to convolve the spatial relationship between the 14 Stations of the target
and neighboring cities into the prediction of the PMs 5 pug/m?3 concentration. The
predictions of each time step were then fed into an LSTM model that handled the
temporal dimension and predicted the final result for the target city. Chang et al.,
2020 also included stations that were further away by incorporating the different
data sources of the areas into the LSTM with three different processing streams
for the local, the neighboring, and the abroad data set, which merged the output
prediction of the individual streams into one prediction simultaneously during
training. Another LSTM was utilized by Qiao et al., 2019 to predict the next
time step. The authors additionally decomposed the PM; 5 signal into different
high and low-frequency bins. Before the decomposition was fed to the LSTM,
a stacked auto-encoder (SAE) was trained to reduce the dimensionality of each
signal decomposition. The prediction of the different decompositions was then
denormalized and reconstructed into one forecast value. Tian et al., 2022 performed
another unsupervised pretraining. The authors trained a deep belief network (DBN)
to predict future time steps. The training of the DBN can be divided into two
stages. The model was built layer after layer in the first stage, starting with
the input layer. Each layer consisted of a restricted Boltzmann machine (RBM)
trained to reproduce the input at the output while the dimension from input to
output was decreased. Next, new layers were stacked to the previously trained
RBM to construct the DBN consisting of multiple RBMs. In the second stage,
the previously initiated model was trained to predict future time step, acting as a
normal multi-layer perceptron.

While Liang et al., 2018 modeled the spatial and temporal relationship through
a multi-level attention network, Jin et al., 2022 proposed an algorithm that can
be divided into two parts. The first part correlated the different stations over the
spatial dimension by considering the correlation and redundancy. In particular, the
maximal information coefficient and a distance entropy algorithm were used. Since
the algorithm was parametric, the authors used a Bayesian optimization approach
to find the most suitable parameters to correlate the stations. The variables with
high correlation and low redundancy were then selected as input to the second
part of the proposed algorithm, which consisted of a variational Bayesian GRU
network. This network differed from standard GRUs regarding how the weights
were represented. In contrast to using fixed learned weights, each network weight
was represented by a learned probability distribution from which new weights
were sampled during inference. Saez and Barceld, 2022 proposed an algorithm
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that incorporated all 143 stations in the spatial area and learned the relationship
between them. The stochastic partial differential equation was used to find a
Gaussian Random Field (GRF) “with local neighborhood and sparse precision
matrix [...] that best represented the Matern field.” A generalized linear mixed
model (GLMM) was used to predict each target value. More precisely, two GLMMs
were initiated and trained per pollutant (one for long- and one for short-term).
To include randomness that can model seasonal variances, the integrated nested
Laplace approximations were used to predict the pollutants based on the output of

the GRF.

The following researchers additionally used satellite images to improve the
prediction of ground-level pollutant concentration. For this purpose, Muthukumar
et al., 2021 implemented a graph CNN to learn the spatial correlation between
weather data. The graph was trained through self-supervision, e.g., nodes (stations)
of the graph were randomly hidden during the training to create video-like weather
data with higher resolution. The learned output served as input to a Conv-LSTM
combined with the air pollutants of the ground-level stations and the remote sensing
data. Zamani et al., 2019 followed the question of whether satellite data can improve
the ground-level prediction of PMs 5. They used ground-level historical PMs 5 and
meteorological data to combine them with and without aerosol satellite images. To
predict the PM, 5 of the next time step, they incorporated the RF and extreme
gradient boosting (XGB) models and highlighted the feature importance. They
showed that the AOD data did not positively influence the prediction performance.
They argued that this could be related to the high amount of missing values for
this predictor (94%).

Subsequently, studies that aim to estimate the ground-level PM; 5 from AOD
data and other predictors are revised. For example, Hu et al., 2017 estimated the
ground level PM, 5 concentration of several grid cells from AOD data using an
RF. Another RF was implemented by X. Meng et al., 2021. This study aimed
to fill the spatial grid cells of the study area with estimations of the daily PMs 5
concentration. To achieve this, the author learned the relationship of the AOD
image data to the ground-level measurements using an RF. Various data sources
described in Section 2.1 were used by T. Li et al., 2017 to train a DBN to predict
the grid cell pollutant concentration. The daily average temporal and spatial
P M, 5 ground-level concentration across the USA was predicted by Di et al., 2019.
The researchers used an RF, a GBR, and an ANN as an ensemble. Each model
separately predicted the target grid cell and incorporated the neighboring cells’
pollutant concentration. The individual prediction was then combined with a
generalized additive model that weighted each prediction specific to the location
(e.g., urban area) and time (e.g., season). Additionally, the authors analyzed the
relative predictor performance for the different base learners.

To summarize this section, it can be concluded that while linear models and
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support vector regressors (SVRs) were used to predict the air pollutant concentration
of a single station, for multiple stations, the researchers often relied on more complex
recurrent neural networks architecture (with the majority of the revised articles
using the LSTM) or 1D-CNN. In addition, mapping the AOD data to the ground-
level grid cells was often preformed using the RF.

2.5. Model validation and results

The current section describes how different authors evaluated their models and
the results they achieved. To ensure credible scientific results, it is common in
ML to develop the learning algorithms on a training set and to evaluate them on
a separate test set that the algorithm did not “see” before. Many authors split
their data set by year, e.g., the training was performed on previous years to predict
the following year (e.g., Biancofiore et al., 2017; Zhou et al., 2019), the data was
randomly split and cross-validated (e.g., Castelli et al., 2020; Kleine Deters et al.,
2017; Zhang et al., 2021) or cross-validated over the ground-measurement stations
(Blond et al., 2003; Qiao et al., 2019). The validation setup and results of the
studies that predicted future pollutants are presented in Table 2.3. While many
authors compared various settings (e.g., different time steps for look back and
horizon, different error measures), only results comparable to other studies are
shown.

As seen in Table 2.3, most studies predicted the next hour’s pollutant concen-
tration and evaluated their performance with either the root mean squared error
(RMSE) or the mean absolute error (MAE). In addition, many researchers calcu-
lated different metrics to compare their results (Saez and Barceld, 2022 achieved
a mean absolute percentage error of 38.53% for the exact prediction). The look
back of time steps varied from 0 (current) to 20 days and from 2 to 72 hours.
The MAE value greatly varied from 2.94 ug/m? to 14.63 ug/m? for the one-hour
ahead single station forecast and from 14.08 ug/m? to 23.97 ug/m? for the next
6 hours. Most studies employed a variation of the LSTM model. Even though
Table 2.3 shows the results for predicting P M, 5, many authors predicted different
pollutant species like CO, sulfur dioxide (SO,) (e.g., Saez and Barceld, 2022).
Predicting horizon intervals like the average value of the lead hours 7-12 is also a
common technique to evaluate the performance (X. Li et al., 2017). On the other
hand, the number of time steps for the look back was sometimes investigated via
auto-correlation (Tao et al., 2019). It should be noted that most of the studies
shown in Table 2.3 used the historical pollutant concentration of the target site,
and only few did not include these values as inputs (Kleine Deters et al., 2017;
Saez and Barceld, 2022). The model employed by Liang et al., 2018 additionally
allows the visualization of the learned spatial relationship between the different
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Table 2.4: The table presents the results of the different studies that estimate the daily
average ground level PMs 5 concentration in an area. The spatial resolution corresponds
to the approximate size of one grid cell.

Article Algorithm Spatial RMSE
resolution
Hu et al., 2017 RF 12 x 12 km?  1.78
X. Meng et al., 2021 RF 1 x 1 km? 16.3
T. Li et al., 2017 DBN 10 x 10 km?  13.03

Di et al., 2019 Ensemble 1 x 1 km? 2.78

stations. Whereas the results in Table 2.3 mainly addressed the problem statement
of future air pollutant prediction, Table 2.4 presents the achievements of estimating
daily average ground level pollutant concentration from satellite images over an
area. Considering the more difficult task of predicting the average concentration of
a grid cell with higher spatial resolution, Di et al., 2019 outperformed the other
authors with an RMSE of 2.78 ug/m?. While the results of all presented studies
are given in pg/ m3, Muthukumar et al., 2021 estimated the daily average P M, 5
concentration of ground-level measurement stations of the following two days. The
RMSE for this study was 0.000751 parts per billion and, therefore, not directly
comparable to the other studies.

In this section, the validation and results of various researchers were presented.
As the predicted horizon grows or the resolution of a spatial grid is increased, the
challenge for an accurate prediction increases. Furthermore, it is clear that even
though comparable articles were presented, the diversity of different experimental
setups made comparing the studies difficult. Nevertheless, the presented studies
offered a comprehensive overview of applied algorithms and their success.

2.6. Synopsis

The discussed sections thoroughly explore air pollution studies, delving into data
considerations, preprocessing techniques, predictive algorithms, and model evalua-
tions. Section 2.1 shows how researchers utilize ground-level pollutant measurement
stations, recording harmful gas concentrations in ug/m?® or ppb. Meteorological
factors and additional features, including time-related variables and data from
neighboring stations, often shape the different datasets. The data sets include di-
verse measurement times, ground-level stations, and sampling frequencies. Satellite
images, particularly AOD measurements, contribute to estimating ground pollutant
concentrations. Next, Section 2.2 emphasizes the significance of preprocessing for
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effective ML use in air pollutant prediction. Challenges like categorical variables
and numerical scale consistency are addressed. At the same time, methods for
handling missing data and transforming time-related features are discussed, high-
lighting the crucial role of preprocessing in algorithm performance enhancement.
The subsequent part of the Chaper 3 delves into predictive algorithms, showcasing a
spectrum of models from single-station predictions to spatial grid modeling. Various
studies implement ML algorithms like linear regression, SVM, and ensembles, with
a notable emphasis on LSTM networks. Spatial and temporal relationships are
explored through ensembles, decision tree regressors, and complex neural networks,
demonstrating the evolving landscape of predictive modeling techniques in air
pollutant research. Next, Section 2.5 outlines standard ML practices, emphasizing
reliable model assessment through separate training and testing sets. Notable
variations in validation setups, prediction horizons, and evaluation metrics, such
as MAE and RMSE, are highlighted. The transition from predicting future air
pollutant concentrations to estimating daily average ground-level concentrations
from satellite images is discussed, showcasing the challenges of increasing spatial
resolution.

These sections collectively present a holistic view of air pollution studies, cov-
ering data considerations, preprocessing steps, predictive algorithms, and model
evaluations. Building upon the insights garnered from this section, the following
chapter applies the gained knowledge, outlining the specific approaches taken to
preprocess data, implement predictive algorithms, and evaluate models in the
context of air pollution research.



Chapter

Materials and Methods

In the following chapter, Section 3.1 outlines the technological framework and
software tools utilized for model development, setting the stage for the subsequent
methodological components. Afterward, Section 3.2 focuses on the acquisition,
description, and preprocessing of different data and gives an overview of the inputs
fed to the different machine learning (ML) models. In Section 3.3, a detailed
framework for model development, refinement, and assessment is outlined, creating
a robust experimental foundation for the study of air pollutant prediction.

3.1. Development environment

The underlying Latex template used to format this thesis is based on Navarro-
Guerrero, 2014. Depending on the computing workload, the different programs,
and scripts are either run locally on a Laptop with 8 GB RAM and 4 CPUs utilizing
2.5 GHz each or on a high-performance cluster electively with a GPU or CPU node.
For the development of the different scripts and programs, Ubuntu 22.04 is used
as the operating system. Considering its wide range of application possibilities
and personal experience, Python 3.10 is used to implement the different programs
and scripts. Apart from the provided Python standard libraries, various other
libraries and frameworks are incorporated. They include netCDF4 (Whitaker, 2023)
and xarray (xarray developers, 2023)) to handle NetCDF files used for grids of
satellite data or grid forecasts and numpy (Harris et al., 2020), pandas (McKinney,
2010) and scikit-learn (Pedregosa et al., 2011) to further preprocess and prepare
the collected data. Furthermore, scikit-learn provides a variety of different ML
algorithms that are used in this thesis and tensorflow 2.11 (Martin Abadi et al.,
2015) is utilized as a framework to implement artificial neural networks (ANNs).
When missing values are expected in the inputs, the XGBoost library (Chen and
Guestrin, 2016) is used in favor of scikit-learn since the implementation is able to
handle missing values naturally. The optimization of the hyper parameters (HPs)
belonging to the different learning algorithms is performed using SMAC3 (Lindauer
et al., 2022). The different aspects of the results are visualized using Matplotlib.

20
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3.2. Data

While Section 3.2.1 outlines the various steps taken to acquire, describe and
harmonize suitable data to answer the overall research question, Section 3.2.2 details
the steps taken to refine and prepare the raw data, addressing challenges such
as missing values, categorical variables, and numerical scaling to ensure optimal
compatibility with ML algorithms.

3.2.1. Acquisition and description

For this research, data from the following three different primary sources were
merged: Deutscher Wetterdienst (DWD) for meteorological data, Umweltbundesamt
(UBA) for the different air pollutants, and Copernicus Atmospheric Monitoring
Service (CAMS) for the air pollutant forecasts. The in-situ observations from
DWD, the metadata for the stations of UBA and the CAMS regional forecast were
accessed via web interface on Deutscher Wetterdienst, 2023, Umweltbundesamt,
2023b and Copernicus, 2023, respectively, the in-situ observations for UBA were
obtained on demand through e-mail correspondence. The latter can be further
subdivided into measurements from federal (Umweltbundesamt, 2023a) and state
governments (Bundesliander, 2023). To accelerate the process of downloading each
DWD station manually, a simple web scraper was implemented to automate the
process. Table 3.1 gives insights into the distribution of the different features
collected from UBA and DWD.

All data was available at an hourly time resolution, spanning from 2020-03-01 to
2022-12-31. For the CAMS data, a spatial grid spanning over Germany from 55.292°
north, 5.669° west, 47.339° south, and 15.249° east with a spatial resolution of 0.1°
was acquired. The closest DWD station was fused with the ground-level pollutant
station to add the meteorological factors. Additionally, the CAMS forecast in
which spatial grid cell the UBA station is located was added and aligned over the
time dimension. Since this research evaluates the improvement of regional forecasts
in the local context of an urban environment, eleven major cities were chosen as
data subsets. Each city is considered a separate study site, and each study site
includes pollutant measurement stations within a radius of 50 kilometers of the city
center as in Akbal and Unlii, 2022. Note that an individual station can be used in
multiple study sites. The number of different stations for each pollutant varies from
city to city and can be found in Table 3.2. fine particulate matter with a diameter
< 2.51g/m® (PM,5) was chosen as the target pollutant because of its most severe
effect on human health (European Environment Agency, 2023). A second pollutant
was selected due to the difficulty in predicting its future concentration, which is
additionally displayed in Table 3.2. The relative error per study site is expressed by
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Table 3.1: Statistics for the different measurements from all available ground-level stations
are displayed. The pollutants were measured by the UBA, and the meteorological
measurements were taken by the DWD. The statistics of the various variables used as
inputs differ notably. In particular, the pollutant measurements’ minimal (Min) and
maximal (Max) values stand out and can be denoted as measurement errors.

Variable Min Max Mean | Median | Mode | Std | Variance

NO -6.53 | 624.12 | 10.97 2.14 0.62 | 22.07 | 487.24

NO2 -6.66 | 345.26 | 21.13 16.95 2.00 | 16.06 | 257.86

PM;5 -9.94 | 2445.58 | 10.10 8.13 5.00 | 7.54 56.91

PMy -6.90 | 1083.50 | 16.19 13.60 1.50 | 12.94 | 167.46

O; -3.94 | 222.69 | 49.05 48.08 0.60 | 30.36 | 921.79

SO, -9.66 | 675.32 2.14 1.15 0.80 | 4.76 22.67
Precipitation [mm] 0.00 51.80 0.07 0.00 0.00 | 0.48 0.23
Temperature [C] -24.00 | 39.20 | 11.33 | 11.10 | 9.00 | 7.77 60.43

Relative humidity [%] | 11.00 | 100.00 | 73.67 78.00 | 94.00 | 19.02 | 361.88

Wind direction [degree] | 0.00 | 360.00 | 190.60 | 210.00 | 220 - -

Wind speed [m/s] 0.00 20.20 3.21 2.90 2.10 | 1.89 3.59

calculating the standard score for the mean absolute error (MAE) between CAMS
prediction and ground-level measurements.

Table 3.2 compares the relative MAE of the CAMS prediction in the different
cities chosen as study sites. It can be seen that the prediction of PMs 5 concentration
yields the lowest and O3 the highest relative error over all cities. However, the
standard score for Oj is highly influenced by a single station in Stuttgart and does
not reflect the performance of the CAMS prediction achieved in all other cities.
Excluding Stuttgart from the data set results in the lowest relative error after
particulate matters (PMs) over all cities. Finally, NOy was chosen over SO; as the
second target pollutant because of the extensive measurement in all evaluated cities.
The following graphics show the average distribution of the pollutant concentration
for the target pollutants PMs, 5 and NOy concerning the month of the year, day of
the week, and hour of the day. The data basis for the different figures is composed
of the first two years of the data described in Table 3.2.

Figure 3.2 clearly shows a similar pattern in average pollutant concentration for
the target pollutants. Both have their average peak concentration during March
and the average lowest during July. Even though similar patterns can be seen,
the PM, 5 concentration seems to be more influenced (+26.82% during March and
-33.76% during July) compared to the NO; concentration (+15.23% in March and
-25.90% in July). In contrast, the NOy concentration increases more rapidly over
the mean represented as dashed horizontal line (between August and September)
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Table 3.2: Relative mean absolute error of the CAMS forecast for different pollutants and
cities. N denotes the number of stations per calculated error. Even though ozone (O3)
has the highest relative error over all cities, it can be seen that a single measurement
station highly influences this error in Stuttgart. Furthermore, the number of measurement
stations per pollutant varies from 32 for sulfur dioxide (SO3) to 191 for nitrogen dioxide
(NO3) overall evaluated cities.

PMs 5 P Mg NO NO, O3 SO,
City MAE N | MAE N |[MAE N |MAE N |MAE N | MAE N
Stuttgart 050 15| 052 13 | 069 15| 094 15 | 1570 1 - 0
Berlin 048 21| 062 21 | 075 26 | 0.75 26 | 0.57 14| 1.06 2
Dortmund 0.59 10| 0.60 23 | 059 26 | 0.78 26 | 0.60 12| 1.12 4
Duesseldorf 0.58 12| 057 35 | 059 36 | 0.81 36 | 0.58 15| 1.08 5
Frankfurt 058 13| 062 17 | 071 21 | 0.85 21 | 0.65 13| 276 9
Hamburg 049 6 | 059 12 | 066 14 | 0.74 16 | 0.52 0.58 6
Hannover 0.50 4 | 0.60 4 0.91 4 0.95 4 0.70 - 0
Koeln 057 7056 21 | 058 21 | 0.81 21 | 0.59 11 - 0
Leipzig 047 4 ] 059 10| 066 11 | 0.76 11 | 0.63 8 | 0.72 4
Muenchen 0.64 6 | 0.57 5 0.61 6 0.86 6 0.66 5 - 0
Nuerenberg 0.55 5 | 0.60 8 0.58 9 0.71 9 0.60 5 | 1.30 2

T X| T 2 T > T 2 T X T X
All 0.54 99| 0.58 169 | 0.67 189 | 0.82 191 | 1.98 94| 1.23 32
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Figure 3.1: A schematic visualization of how the three different datasets are merged can
be seen. The closest weather station for precipitation (red crosses), temperature (blue
crosses), and wind (green circles without filling) on the right site is merged with the
closest pollutant ground-level measurement station displayed on the left side as green
circles. Additionally, the CAMS forecast grid cell, where the pollutant station is located,
is added as input data per station.
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Figure 3.2: The monthly average pollution concentration and 95% confidence interval of
PMs 5 and NOs. Both pollutants show a higher concentration level during the winter
periods. The horizontal dashed line depicts the yearly average concentration.
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than the PM, 5 concentration (between October and November). Additionally, the
95% confidence interval shows a wider spread for NO, than for PM, 5, indicating
a higher challenge for predicting future concentrations.
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Figure 3.3: The average pollution concentration and 95% confidence interval of PMs 5
and NOy per weekday. While the mean concentration of PMs 5 only shows a marginally
changed development over the week, N O3 shows a trend of reduced pollutant concentration
towards the weekend. The horizontal dashed line depicts the weekly average concentration.

Figure 3.3 shows the mean pollutant concentration per day of the week. The
NO, concentration depicts a clear pattern with a peak concentration (10.62%
above average) on Wednesdays in the middle of the usual 5-day working week and
weekly low on Sundays (32.04% below average). The amount of combustion engine
traffic might explain the concentration variation. On the contrary, the PM,5
concentration does not show similarly distinctive patterns, with the minimum and
maximum concentration per hour only varying about 4.7% below and above average
during Mondays and Thursdays, respectively. Again, NO, shows a wider spread
than PM, 5 for every weekday.

The hourly mean concentration of PMs5 and NO, can be seen in Figure 3.4.
While NO, shows a clear pattern regarding the hour of the day, this pattern is
less distinctive for PMs 5. The lowest mean NOy concentration can be observed
at 4 o’clock (28.09% below average), and the mean peak concentration can be
observed 4 hours later at 8 o’clock(18.91% above average). An additional peak
can be noticed between 18 and 24 o’clock in the evening. Similarly to NOs, the
P M, 5 shows a peak concentration in the morning hours at 9 o’clock (8.42% above
average) but opposed to NO, has an observed negative peak concentration at 17
o’clock. The 95% confidence interval for NO, depicts, similar to Figure 3.2 and
Figure 3.3, a wider spread in contrast to PMs, 5. Furthermore, the spread of the
NO, concentration is increasing towards the second half of the day. The figures
above show how periods and an adapting environment can affect the pollutant
concentration of PM, 5 and NO,, with the latter being more influenced by external
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Figure 3.4: The average pollution concentration and 95% confidence interval of PMs 5
and NOj for each hour of the day. Again, even though similar patterns can be seen in
the average concentration distribution per hour of the day, the relative average change of

N Oy concentration during the day is higher than for PMs 5. The horizontal dashed line
depicts the daily average concentration.

factors. While the day of the week and the hour of the day are the most influencing
factors for NOy, PM, 5 is influenced most by the month of the year. While the
high variation of NO, can most probably be explained by human behavior (e.g.,
cars with combustion engines), PM, 5 might be most affected by meteorological
factors.

Figure 3.5 depicts a correlation matrix of the measured inputs displayed as
a heat map. The highest (positive) linear correlation exists between PM, 5 and
PMiy. The target pollutant PM, 5 is additionally been correlated with the other
pollutants NO, NO,, O3 and SO,. It also shows less distinct correlations with
the meteorological measurements, temperature (TT_TU[C]), relative humidity
(RF_TU[%]), and the one wind vector (Wy). The target pollutant NO, has the
highest linear correlation with NO with a small margin to Os. An intermediate
correlation with the other pollutants can also be observed. Additionally, it slightly
correlates with every meteorological factor except precipitation (R1 [mm]) and one
wind vector (Wx).
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Figure 3.5: A correlation matrix of the measured inputs is displayed as a heat map.
The target pollutants PMs 5 and NOs highly correlate with PM7g and NO, respectively.
Additionally, both correlate positively or negatively with the other pollutants, with an
absolute correlation between 0.21 and 0.56. Furthermore, the target pollutants correlate
slightly with the meteorological factors except precipitation (R1 [mm]), including one
wind vector (Wy). While the PMjy 5 has the strongest correlation with the wind vector
(Wy), NO; correlates most negatively with the temperature (TT_TU[C]).
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3.2.2. Preprocessing

This section describes the various preprocessing steps taken to transform the
raw data to be used. One metadata file was created to represent the information
for UBA and DWD. For this, the UBA specific metadata was downloaded from
a separate source (Umweltbundesamt, 2023b), and stored in a file which includes
for every station the station code, geographical location, measurement start, and
end date, the station classification (background, industrial, traffic) and the area
classification (rural, suburban, urban), and the information about which pollutant
was measured at the particular station. For the DWD stations, a metadata file was
created with the information given in the data source (Deutscher Wetterdienst,
2023). Besides the station code, the file includes information on the location, the
start and end measurement date, and the measurement objective of the specific
station (wind, precipitation, or temperature). As mentioned in the previous chapter,
the closest DWD stations for the meteorological factors were merged by distance to
the respective UBA ground-level station. A combined metadata file was created to
store the pollutant station-related information, the closest meteorological station,
and the corresponding distance, which was used to merge the correct measurement
data subsequently.

As the first step, the different pollutant measurements provided in individual files
are merged per station. Then, the raw ground-level UBA measurements missing
values or erroneous values (indicated with -999) were replaced with a “not a number”
value. A date-time index was constructed for each hour from the given “Date
and “Time” columns. The “PM1” and “PM2” columns were renamed to “PM10”
and “PM2_ 5" respectively. The time range of the stations was narrowed between
2020-03-01 and 2022-12-31. If the target pollutant (e.g., PMs5) has more than 10%
of missing or erroneous measurements at the target station to process, the station
was not included in this study. Next, the closest DWD ground-level measurements
were aligned, matching the same time as the UBA observations. Moreover, the
CAMS prediction for the location of the ground-level UBA station was added and
aligned over the time dimension. The meteorological missing or erroneous values
(indicated with -999) were also replaced with NaN. Furthermore, white spaces in
the column names were removed, and the corresponding unit per meteorological
factor was added (e.g., “ F” was converted to “F [m/sec|”). Additionally, all
columns that contain data irrelevant to the learning algorithms were dropped.
Time-related features similar to Castelli et al., 2020 were added to the data set.
For this, the weekday or month was mapped to an integer value (e.g., January:0,
February: 1) and then transformed on the unit circle, e.g., into the components
cos(2mxmonth/12) and sine(27 xmonth/12). This gives the subsequently utilized
ML model the ability to learn the recurring patterns of the month, weekday,
and hour of the day, which are evident in Figure 3.2, Figure 3.3 and Figure 3.4,
respectively. In the next step, the data set was split into inputs (all meteorological
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factors, all pollutants, time features, CAMS prediction) and outputs (the target
pollutant). The missing values in the input data were filled depending on the data
type. For the missing meteorological factors (added from the closest ground-level
measurement stations), the next station with a valid measurement was used if
the station was at most 100 km from the target pollutant station. Missing or
erroneous pollutant measurements were filled, similar to Hu et al., 2017, using the
CAMS prediction of the particular pollutant for that time and location. The wind
direction was represented in degree and might therefore be difficult to interpret by
the learning algorithms, e.g., the difference of 1° from 359° to 0° is not reflected
well in this representation. Therefore similar to Kleine Deters et al., 2017, the wind
degree was first transformed from polar to Cartesian coordinates and additionally
multiplied by the wind speed.

Next, the data set until 2022-05-31 was reserved for training; the remaining
data was for testing purposes. Both data sets were rearranged into daily samples
comprising the current hour and past 23 hours as inputs and the next 23 hours of
the target pollutant as output. Similar to Kleine Deters et al., 2017, samples that
still included missing values were dropped from the data set. As in Chang et al.,
2020; Tao et al., 2019; Zhou et al., 2019, the training data was standardized by
calculating the mean and the standard deviation of the training data to subtract
the mean from training and test data and additionally divide both sets by the
standard deviation of the training data. For the ANNs, two additional data sets
were constructed by re-sampling the data to a 2-hour and 4-hour measurement
frequency. For all other learning algorithms, the training and test data was flattened
by merging the lookback and feature dimension so that (n_samples, n_lookback,
n_inputs) becomes (n_samples, n_lookbackxn_ inputs).

3.3. Experimental Set-Up

In the following section, the machine learning (ML) algorithms utilized in this
study are proposed, followed by a description of how the selection procedure was
performed and how the proposed algorithms were optimized using hyper parameter
optimization (HPO). Subsequently, the different Scenarios that serve as the basis
for evaluating the different algorithms’ performance are introduced. Moreover, a
description of how the different predictions were combined is presented. The chapter
is finalized by describing the evaluation scheme used to measure the performance
of the different predictive models.
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3.3.1. Proposed models

Since the goal of this research is to evaluate how regional forecasting models can
be enhanced in local urban environments using ML, various learning algorithms
were utilized so that the answer to the research question does not depend on
the capability of a single ML model class. Orientating on the implemented ML
algorithms revised during the literature review and summarized in Table 2.3,
artificial neural networks (ANNs) composed of long-short term memory (LSTM)
(Akbal and Unlii, 2022; Chang et al., 2020; Huang and Kuo, 2018; X. Li et al., 2017;
Mao et al., 2021; Qiao et al., 2019; Qin et al., 2019; Zeng et al., 2022; Zhang et al.,
2021; Zhao et al., 2019) were utilized for this research. Moreover, convolutional
neural network (CNN) (Du et al., 2019; Huang and Kuo, 2018; Qin et al., 2019;
Tao et al., 2019) were the most often used algorithms and therefore also utilized in
this work. Notably, the CNN was always used in combinations with other layer
types by the researchers (see Table 2.3). In addition, ML algorithms that were
successfully applied by Bertrand et al., 2023 using model output statistic (MOS),
namely the Lasso, Ridge regression and gradient boosting regressor (GBR) were
implemented. Furthermore, a support vector regressors (SVRs) with a linear kernel
(as in Castelli et al., 2020; Zhou et al., 2019) was evaluated. Whenever missing
values were expected in the input data, extreme gradient boostings (XGBs) (set
up in a similar way to the GBR from literature) were used. A comprehensive
explanation of the previously mentioned ML algorithms (excluding LSTMs, CNNs
and XGB) can be found in Hastie et al., 2009. For explanations on LSTMs and
CNNs, one can revise Goodfellow et al., 2016. A description of XGB and the
underlying implementation can be found in Chen and Guestrin, 2016.

3.3.2. Feature selection

To reduce the data input dimension and simplify the prediction task for the ML
algorithms, a subset of input features (predictors) most relevant to the model’s
response were chosen. This step not only reduces the computation time but also
has the potential to increase the performance of the different learning algorithms.
One way to reduce the dimension of the input data is to identify essential predictors
from the correlation between input and target pollutants displayed in Figure 3.5
of Section 3.2.1. However, the correlation matrix only depicts linear dependencies
between the different predictors and does not show non-linear dependencies. Feature
importance methods that can show non-linear relationships include the permutation
importance introduced by Breiman, 2001 and refined by Fisher et al., 2019, which
shuffles the values of the different features to measure the impact on the model
performance. Additionally Shapley values, which estimate how much each predictor
value alone and in coalition with other feature values contribute to the response
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variable can be used to show non-linear dependencies Molnar, 2020. While these
methods are promising, there is a lag in implementations capable of handling time
series data.

Since the number of combinations for the best subset of n features is 2", a manual
search over all combinations incorporating the different evaluated ML algorithms is
impossible. Additionally, the hyper parameter (HP) configurations of the different
ML algorithms influence how the different predictors are processed. Therefore,
this research treats the search for the best subset of features as a search space
problem with each feature included or not using the HPO methods introduced in
the following Section 3.3.3.

3.3.3. Hyper parameter optimization

In the context of ML, a HP can be defined as a parameter that influences how the
algorithms learn during training without being modified by the learning algorithm
itself (Goodfellow et al., 2016). Due to the vast amount of adjustable HPs in a
ANN, finding the optimal set and their corresponding values can be especially
challenging. Domain knowledge of the underlying data can help to reduce the set
of HPs and narrow their corresponding ranges. The capacity of a model enables
or restricts its capability to match the complexity of a given task, resulting in
underfitting when the capacity is too low and overfitting when the capacity is
too high (Goodfellow et al., 2016). Adjusting the HPs is often a search for the
suitable model capacity that matches a given task to minimize the generalization
error. Standard techniques include the hand-tuning and automated HPO. The first
requires expert knowledge of the effect of the different HPs on the specific task at
hand and the interplay between them to be successful.

There are various methods for automatic HP search. A grid search can be
regarded as the simplest one, in which one defines a finite set of values per HP,
of which each combination value is evaluated on a validation set to find the
best combination of HP in the configuration space. Since this strategy tests all
combinations, grid search is only feasible for three or fewer tuning parameters. A
good alternative to grid search is random search proposed by Bergstra and Bengio,
2012. In favor of defining a fixed set of values per HP as in grid search, value
ranges, or sets are defined, from which specific values are sampled for each HP
during the search, up to a predefined number of trials. This procedure has been
shown to outperform the grid search on various tasks with less computational time
(Bergstra and Bengio, 2012). They argue that since all combinations of HPs are
tested in a grid search experiment, less important HPs allocate to many trials, and
important ones need better coverage in their dimension. Taking this idea one step
further, Bayesian optimization treats the search for the right HP configuration
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space as a ML problem itself (Russell, 2010). The task of the ML algorithm is to
find the best HP configuration in a configuration space. It is seen as a trade-off
between exploration (identifying HPs in uncertain areas), and exploitation (using
HPs with which the model is confident) by Goodfellow et al., 2016.

One technique of Bayesian optimization (also known as HPO) can be found
in sequential model-based algorithm configuration (SMAC) proposed by Hutter
et al., 2011. SMAC overcomes the previous limitation of sequential model-based
optimization procedures that were only capable of handling numerical HPs by
applying an random forest (RF) as surrogate models. A concrete implementation
of SMAC that is used in this research can be found in the software framework
SMAC3 (Lindauer et al., 2022).

As Section 3.3.2 mentions, selecting beneficial input variables and the number
of lookback timesteps are part of the HPO process. Since the number of HPs of
the different ML algorithms mentioned in Section 3.3.1 greatly varies, two different
strategies were employed to optimize each configuration space. In the first strategy,
a maximum of 2000 trials with diverse HP combinations were sampled for the
different ML algorithms (excluding the neural networks) using SMAC. A summary
of the evaluated HPs can be found in Table 3.3.

Because the number of HPs in the configuration space for the neural networks
is higher and the average training time per combination is longer, as for the other
ML algorithms, a step-wise parameter search similar to Hinz et al., 2018 was
applied. More specifically, the underlying data set was resampled from a 1-hour
frequency to a lower resolution, corresponding to a 2-hour and 4-hour measurement
frequency. Starting with the lowest resolution, 1000 parameter combinations were
evaluated for every frequency resolution. After the first iteration of the 4-hour
resolution data set, the value ranges of the different parameters were narrowed
by choosing new lower and upper bounds for the next iteration. These bounds
were identified from the 50 best-performing trials. For numerical values, these
trials’” mean and standard deviation were calculated per HP. The mean was the
default value for the particular HP for the higher resolution; subtracting and
adding the standard deviation from the mean was the lower and upper bound,
respectively. The importance of categorical HP was evaluated using the number
of occurrences of the different options in the 50 best-performing trials. If an
option was represented less than 10% (5 times) in this trial, it was excluded in
the following optimization iterations. All remaining options were weighted due
to their relative number of occurrences in the first 50 trials. Moreover, binary
variables and the number of LSTM layers were also treated as categorical HPs.
This process was repeated to perform the last HPO on the original resolution. The
following HPs were optimized during the search for the ANNs. Similar to the
previously presented HPO process, data-specific parameters included the number
of timesteps used as input and whether the different input features were included
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Table 3.3: The value ranges or sets for the different HPs of the implemented machine
learning algorithms are shown. All available HPs provided by the scikit-learn library
(Pedregosa et al., 2011) were evaluated, if applicable. For value ranges, suggestions by
the library above were considered. The library also provides a description of each of the
HPs and how they are implemented.

Algorithm Hyper parameter Values
Lasso alpha [0, 15]
tol [0.00001, 0.001]
precompute {False, True}
positive {True, False}
selection {cyclic, random}
Ridge solver {svd, cholesky, lsqr, sag, 1bfgs}
tol [0.00001, 0.001]
alpha [0, 15]
Linear SVR loss {epsilon__insensitive, squared_ epsilon_ insensitive}
tol [0.00001, 0.001]
C {0.001, 0.01, 0.1, 1.0, 10, 100, 1000}
GBR loss {squared__error, absolute_ error, huber, quantile}
learning rate [0.001, 1]
n_ estimators [50, 500]
criterion {friedman_ mse, squared__ error}
min_ samples_ split [2, 10]
min_ samples_ leaf [1, 10]
max_ depth [1, 10]
max_ features {sqrt, log2, 1.0}
n_iter _no_ change {10,100,1000,10000,100000}

in the learning process. Furthermore, the parameters batch size, initial learning
rate, optimizer, loss, learning rate scheduler, and early stopping, which directly
influence the learning process, were included in the search space.

Intuitively, the batch size controls, after how many samples a weight update is
performed. The strength of the update is determined by the learning rate times
the calculated loss between predicted and actual values, and is performed using the
optimizer. The used scheduler reduced the learning by Ir_new=Ir_decrease*Ir_old,
where 0.7<Ir_decrease<0.95. The configuration space included the starting epoch,
the epoch frequency, and the learning rate decrease. Early stopping is a simple
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regularization parameter that terminates the training process after no improvement

related to the validation loss is achieved for a definable number of epochs (patience,
(Goodfellow et al., 2016)).

All ANN were trained for a maximum of 200 epochs. Since there is an arbitrary
number of combinations for the neural network structures, types, and activation
functions, the set and ranges of related HPs were roughly based on the results in
the literature and summarized in Table 2.3. The following Table 3.4 outlines the
initial configuration space of the HPs for the first iteration of the optimization
process on the lowest data resolution (4-hour time step).

Table 3.4: The value ranges or sets for the different HPs corresponding to the ANNs
are shown. The parameters were loosely based on the revised literature presented in
Section 2.5 and the suggestion of the underlying deep learning framework. Note that
the value ranges correspond to the first iteration of HPO calculated on the lowest data
resolution.

Hyper parameter Values Dependent on
Batch size (16, 64] -
Optimizer {Adam, Nadam, SGD, RMSProp} -
Initial learning rate [5+107% 1.5 %1079 -
Loss {huber loss, mean squared error} -
Learning rate scheduler {True, False} -
Start epoch [3, 25] Learning rate scheduler == True
Learning rate decrease [0.75, 0.95] Learning rate scheduler == True
Every N epoch [3, 10] Learning rate scheduler == True
Early stopping {True, False} -
Patience [3, 15] Early stopping == True
CNN layer {True, False} -
CNN filter size 2, 5] CNN layer == True
Num. LSTM layers [1,4] -
Dense layer {True, False} -
Units/Filters [16, 512] Dense layer == True
Normalization layers {True, False} -
Dropout layers {True, False} -
Dropout [0.0, 0.5] Dropout layers == True

The HPs for the model architecture included parameters concerning the global
structure of the model and layer-specific parameters. Parameters defining the global
structure included whether or not a convolution was used as a feature extractor
in the first layer (CNN layer). Furthermore, it was determined how many LSTM
layers are used in the network (num. LSTM layers). Adding a fully connected
layer between LSTM and the output layer was the final HP of the global model
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structure (Dense layer). The number of units (or filters for the CNN layer) was
evaluated for every layer. Adding normalization after each layer was given as an
additional option. Additionally, dropout was applied after each layer, varying from
zero (no dropout) to 0.5. The dropout procedure is a regularization technique that
randomly drops a fraction of units in the preceding layer by multiplying them with
zero (Goodfellow et al., 2016). Finally, the filter size of the CNN layer was also
part of the searching process with the filter size greater than one to a maximum
number of past timesteps included in the training process.

Regardless of the learning algorithm, of all the available data shown in Table 3.1,
only stations that measure the maximum number of input features described
in Table 3.1 were considered. Each HP configuration was performed via cross-
validation on a subset of three randomly chosen stations from all previously selected
stations. The randomly selected stations were the same for all HP configurations.
Notably, the HP search was only performed on data corresponding to the first
2/3 of the training time range. For validating the performance of the different
ML algorithms, the last 1/3 of the training time range was used. In total, for the
four different combinations corresponding to the target pollutants fine particulate
matter with a diameter < 2.5ug/m? (PMsy5) and nitrogen dioxide (NOs), with or
without Copernicus Atmospheric Monitoring Service (CAMS) as additional input,
HP were optimized individually.

3.3.4. Scenarios

The section describes three scenar-

ios to investigate the research question N X
in detail. The data basis for all sce- v = j
narios were the study sites across the - X
eleven major cities, shown in Table 3.2. A /,‘-»L
Each study site includes stations within =~ == .~ \
a radius of 50 kilometers from the city T AT =
center. Since particulate matter (PM) Yo ,

can travel great distances (Kim et al., / Call,
2015), this research chooses the same J Ay, B e N =
radius as in Akbal and Unlii, 2022, to /"~ : \
have a sufficient radius to incorporate '
all stations in the different cities and
their surroundings. While Scenario 1
(S1) evaluated the performance of the
different learning algorithms mentioned
in Section 3.3.1 concerning a single sta-
tion (for all stations inside the study area), Scenario 2 (S2) and Scenario 3 (S3) also

P

Figure 3.6: The map shows the experimental
setup for Scenario 1 in the study area of
“Berlin”. The position of the target station
is highlighted as a red star.
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incorporated neighboring stations. The latter excluded measurements at the target
location, thus simulated the interpolation (or extrapolation) of spatial relationships
or an average pollutant concentration inside the given study area. Furthermore,
the use of MOS (including the CAMS forecast as input or not), was additionally
examined for all three scenarios.

Scenario 1 incorporated up to 23 hours past pollutant concentrations measured
at the particular station. Moreover, the current and past meteorological factors were
included as input. For each station in every study area, a ML algorithm was trained
to predict the next 23 hours of the targets pollutants concentration (either PMs 5 or
NO,). The training was performed on the training data set (2020-03-01 to 2022-05-
31). Subsequently, the learning algorithm predicted the validation data ranging from
2022-05-31 to 2022-12-31. Note that the data was already preprocessed for this sce-
nario due to the various steps described in Section 3.2.2. The raw predictions were
saved for later evaluations per study area and station. This process was repeated, ap-
plying MOS by additionally including the CAMS forecast of the particular grid cell,
in which the target ground-level station was located (see Figure 3.1, left) as input.

Scenario 2 incorporated up to 23 hours

X . of past pollutant concentrations mea-

’ sured at the neighboring stations to
: combine this information with the pre-
= \ . viously saved prediction performed at

TS _ﬂﬂ_-‘f/“/"ié<b LN \ the target location. In accordance with
7/7""'s’f;xe\'"ar;;;;\ér,;.\/ s~ the preprocessing steps described in
// f > \ \ Section 3.2.2, the prediction used as

x/ ,/ 553‘0;, \ \“\; input was standardized using the z-

/ s/ A N " pormalization. Additionally, the me-

i @ NG \ ‘ teorological factors closest to the target

station were included as inputs. Similar
Figure 3.7: The map shows the experimen- to S1, a ML algorithm was trained for
tal setup for Scenario 2 in the study area each station in every study area to pre-
of “Berlin”. The position of the target sta- Jict the next 23 hours of the target pol-
tlo_nhi highlighted as ablred star, ar;d t}?e lutants concentration (either PMy 5 or
nelghboring st.atlon's are biue crosses. t_ 'S NO,) at the chosen target station from
example, stations inside a radius of 25 kilo- . . .
. . every neighboring station. The subse-
meters are displayed. For the actual training, -
. . . quent training process was performed
a H0-kilometre radius was applied. . )
in the same way as in S1 (except for
the additional inputs), and the result-
ing prediction was saved per neighboring station for later evaluation. Note that
in the example shown in Figure 3.7, the target station is surrounded by neighbor-
ing stations in multiple directions, which could help to increase the performance.
Other study areas or target stations might not have a similar beneficial station
distribution.
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Scenario 3 was evaluating the same setup as described in Figure 3.7 for S2,
except that the historical pollutants of the target measurement station (or the
predictions that incorporate these measurements) were excluded, so that the target
point was interpolated over the spatial dimension. The target station measurement
was only used to validate the final prediction error. The different ML algorithms
were only trained on the neighboring stations, including the meteorological data
from the target location. Each neighboring station might additionally include
information on bearing and distance to the target station. Additionally, and in
contrast to S1 and S2, a single ML model that incorporates all neighboring stations
simultaneously was investigated. Here, the XGB model was used due to its native
support to handle missing data. It is expected that using MOS by incorporating
the CAMS forecast is particularly beneficial to improve the performance when the
historical data at the target location is missing.

3.3.5. Combining the predictions

Even though the different approaches were already outlined in the previous
section, they are clarified further in the following. Different approaches were applied
to fuse the predictions of the neighboring stations included in S2 and S3. One
major challenge during the fusion process was dealing with missing input data
(e.g., one neighboring station has erroneous values during an evaluated period)
since most implemented ML algorithms can not handle varying input dimensions
or missing data natively. Therefore, the first approach to combine predictions was
to train a single model for each neighboring station to predict the next 23 hours
at the target location and average the predictions over all neighboring stations.
A second approach to combine the various neighboring inputs was utilized using
XGB since the underlying implementation can handle missing data natively. In
this setup, one model was trained using all available inputs from the neighboring
stations simultaneously and thus can learn the temporal and spatial relationships
from the inputs. Both approaches only differed due to the inputs and training
procedure described in the following section. While the first approach was applied
to both scenarios, the second approach was only applied to S3.

3.3.6. Evaluation

The performance of each ML algorithm was evaluated at each station shown
in Table 3.2 for PMs 5 and NO, based on the previously saved predictions per
station. As the primary performance metric, the mean absolute error (MAE),
which is mainly used in literature for air pollutant regression tasks (see Table 2.3),
was used. Moreover, in the case of predicting future pollutant concentration, the
MAE was more accessible to interpret and gives a natural insight into the error of
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the evaluated model. Additionally, the root mean squared error (RMSE) and the
coefficient of determination R? were assessed. Compared to the RMSE and the R?,
the MAE is less sensitive to outliers, making it more suitable for situations where
outliers are less critical. The R? error can give additional information about the
goodness of a fit, with a value of 1 indicating that all and a value of 0 indicating
that the regressor has explained none of the variability in the data. In exceptional
cases, when the predictions are worse than always predicting the mean of the
observed data, the R? can be below 0. The R? is averaged over each of the 23
predicted hours. Supplementing measures to access the performance included
various graphics and the mean signed deviation (MSD), which can show the bias
of the models. As mentioned earlier, the overall performance of the different ML
algorithms were compared against each other and whether MOS was applied or
not. The CAMS prediction was the baseline for all scenarios. When local data was
available (as for S1 and S2), the CAMS prediction was bias-corrected, similar to
the difference method by EEA, 2023. More concretely, the average prediction error
of the past four days between the CAMS prediction and the local measurements
was either added or subtracted for future predictions. A comparison between the
two approaches that combine predictions explained in the previous Section 3.3.5
was additionally applied. Finally, the achieved results were opposed to comparable
results from the literature.

3.4. Synopsis

After introducing the development environment and accompanying software, the
three underlying data sources Deutscher Wetterdienst (DWD) for meteorological
information, Umweltbundesamt (UBA) for air pollutant data, and CAMS for
air pollutant forecasts were presented. The data spans from March 1, 2020,
to December 31, 2022, with hourly time resolution and includes a spatial grid
over Germany. Eleven major cities were chosen as study sites, each with pollutant
measurement stations within a 50-kilometer radius of the city center. The evaluated
target pollutants were PMs 5 and NO,, with a detailed analysis of their average
distribution across the month, weekday, and hour of the day. The preprocessing
steps involved creating metadata files, merging pollutant measurements, handling
missing values, aligning meteorological factors, and adding time features. Additional
transformations were applied for the representation of wind direction and time
features. The final dataset was divided for training and testing, standardized,
and formatted to reflect daily samples for different time resolutions (1 hour, 2
hours, 4 hours). After the dataset was prepared, different ML algorithms, including
Lasso, Ridge regression, GBR, SVR and ANN’s with LSTM, and CNN layers
were employed. To optimize the different ML algorithms HPO, challenges were
addressed through various strategies, including SMAC, resampling data at different
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resolutions, and sequentially narrowing HP ranges. Three scenarios were explored,
assessing the performance of ML algorithms for pollutant concentration prediction,
with two fusion approaches proposed for the neighboring stations in S2 and S3.
The evaluation primarily employed the MAE as a metric to measure the overall
performance, supplemented by graphics and MSD. Furthermore, the impact of MOS
was analyzed, and the results were benchmarked against the CAMS predictions
and literature. In this context, the following section presents and arranges the
results for the HP search, each scenario, and each target pollution.
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Results

This section provides the results to answer the research question of how an
established regional forecasting system can be improved in urban environments. As
mentioned in Section 3.2.1 and Section 3.3.3, the results for the hyper parameter
optimization (HPO) are based on a subset of three randomly selected stations from
the study sites presented in Table 3.2. The data basis for all other results is the
eleven study sites presented in the same table. The training and validation period
for HPO was only performed on the training period from 2020-03-01 to 2022-05-31
(approximately 4/5). The period from 2022-06-01 to 2022-12-31 was reserved as test
data for the three scenarios described in Section 3.3.4. The subsequent sections are
ordered in the way the experiments were performed. First, the results of the found
hyper parameters (HPs) of the different machine learning (ML) algorithms are
presented. Second, the performance of the different algorithms is compared against
the baselines (Copernicus Atmospheric Monitoring Service (CAMS)) for Scenario
1 (S1). Here, a more detailed view is made concerning each predicted pollutant,
individual regressor, and hour of the day. Moreover, the best-performing learning
algorithm is compared in a classification setup corresponding to the different
pollutant indices shown in Table 1.1. Third, the results for Scenario 2 (S2) and
Scenario 3 (S3) are presented and compared against the baselines. For S3, the
specific cases of using a distance vector as supplementing input and incorporating
all neighboring stations simultaneously in one model are additionally presented.
This section closes by aggregating the results and raising questions for the next
section.

4.1. Hyper parameter optimization

The following presents the found HP of the different learning algorithms. The
HPO was performed in a single station setup similar to S1. The HPs, that are
based on the data set that includes the CAMS prediction as additional input are
presented below, the HPs configurations without model output statistic (MOS) can

40
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Table 4.1: The found input features corresponding to Figure 3.5 for the current and past
time steps are shown. The different inputs are displayed for each pollutant and learning
algorithm. The tick indicates the inclusion of the feature. While the number of lookbacks
varies for both pollutants, most algorithms included six or fewer hours in their best setup.
NOQOs is the only input not used by any algorithm, and not a single feature is used by all.
There are also patterns regarding the particular pollutant, e.g., the corresponding target
pollutant (NOy or PMy5) is always included as input.

Input PMas NO,
Lasso Ridge SVR GBR ANN | Lasso Ridge SVR GBR ANN
Look back 5 5 6 2 19 20 9 1 2 6
NO, v v v v v
NO
O3 v v v v v v
PM;s v v v v v v
PMy v v v
S0, v
Precipitation [mm)] v v v v v
Temperature [C] v v v v v v v v
Relative humidity [%] | Vv v v v v v v v
Wx v v v v v v v v v
Wy v v v v v v v v
sine [m] v v v
cosine [m] v v v v v v
sine [wd] v v v v v v v v
cosine [wd] v v v v v v v

be found in the Attachment (Table A.1, Table A.2 and Figure A.1). The displayed
HP shows the single best HP configuration for each pollutant and ML algorithm.

Table 4.1 presents the selection of different input features. The lookback time
steps greatly vary, from one to 20, which nearly corresponds to the maximum
number of 23 hours. Mostly, only the past six or fewer time steps were considered
as input. While nitrogen monoxide (NO) was not used by any algorithm as input,
sulfur dioxide (SO2) was only used to predict fine particulate matter with a diameter
< 2.51g9/m3 (PM, ) utilizing the artificial neural network (ANN). All algorithms
included the respective historical target pollutant, nitrogen dioxide (NO;) was
omitted in all ML algorithms predicting PM, 5, and PM, 5 was only incorporated
by the Lasso algorithm to predict NO,. While none of the algorithms predicting
NO, relied on particulate matter with a diameter < 10ug/m? (P M), the Lasso,
Ridge, and gradient boosting regressor (GBR) included the pollutant. The overall
usage of the meteorological factors as input was more often relevant for predicting
PM, 5. Nevertheless, the wind vector (Wx) and the temperature were relevant in
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predicting NOs. Precipitation, on the other hand, was only incorporated by the
support vector regressor (SVR). For the time-related feature, the patterns could be
more precise, even though most ML models include either the sine or the cosine of
the features for the month ([m]) or weekday ([wd]). Table 4.2 shows the determined
parameters of each ML algorithm during the HPO.

The initial search space of each result presented in Table 4.2 was defined in
Section 3.3.3 and can be found in Table 3.4 for the ANN and in Table 3.3 for all
other algorithms. Up to 3000 HP combinations were tested for the ANN and 2000
for the other ML algorithms. A more detailed description of the experimental setup
can be found in Section 3.3.3. For the different HP, similarities and differences can
be seen between the two predicted pollutants for each presented ML algorithm.
For example, the Lasso algorithm was always precomputed using the Gram matrix,
and the coefficients were not forced to be positive. For the Ridge regression,
the regularization coefficient alpha was close for both pollutants (14.807459 and
14.990312, which lays close to the maximum of 15 as defined in Table 3.3). The
L1 (epsilon insensitive) loss was used for both pollutants by the Linear SVR.
Furthermore, the complexity of the individual trees of the GBR ensemble controlled
by the minimum of samples per split and leaf and the maximum depth of the trees
show similar results. In the case of the ANN, a outstanding difference concerning
the initial search space can only be seen in the choice of optimizer. It is noteworthy
that for the computation of the loss, the Linear SVR, GBR, and ANN all rely
on calculations that are less sensitive to outliers. Figure 4.1 depicts the found
architecture of the ANN corresponding to the target pollutants PMs 5 and NO,
when CAMS was included as input. The displayed HPs together with the HP
shown in Table 4.2 complete the configuration space defined in Table 3.4.

Compared to the initial search space shown in Table 3.4, both networks are
kept relatively simple concerning the number of layers and units per layer. Apart
from that, the upper part of the network (before CAMS input is concatenated)
of the network displayed on the right site used an additional convolutional layer
as a feature extractor. Also, the regularization was partly achieved differently.
For PMs, 5, layer normalization was incorporated in addition to dropout. On the
other hand, the dropout value in the upper part of the network for predicting NO,
is more than 15 times as high as for PM,5. The structure of the lower part of
the networks is similar compared to each other. Both include an additional fully
connected layer (FCL) with a similar number of units after the concatenating with
the CAMS prediction. Table 4.3 shows the statistics describing the distribution
of the mean absolute error (MAE) for the different ML algorithms. Table 4.3 is
based on 2000 HP combinations for each of the presented algorithms. Similar
patterns can be seen for both pollutants. For example, the Ridge regression shows
the lowest mean and maximum MAE and the lowest standard deviation in both
cases. Moreover, the Linear SVR shows the highest maximum value and standard
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Table 4.2: The found HPs for the different ML algorithms are shown. The resulting
HPs regarding the ANN architecture are separately displayed in Figure 4.1. For each
algorithm, some similarities and differences can be found. Remarkably, the Linear SVR,
GBR, and ANN all chose loss functions that are less sensitive to outliers.

Algorithm Hyper parameter Found value
PM; 5 NO,
Lasso alpha 0.036334 0.194414
tol 0.000872 0.000025
precompute True True
positive False False
selection random random
Ridge solver cholesky Isqr
alpha 14.807459 14.990312
tol 0.000346 0.000359
Linear SVR loss epsilon__insensitive | epsilon_ insensitive
tol 0.000978 0.000043
C 1.0 10
GBR loss absolute error absolute error
learning_ rate 0.107452 0.037623
n_ estimators 194 476
criterion squared__error friedman_mse
min_samples_ split 8 7
min_samples_ leaf 10 10
max_ depth 3 4
max_ features 1.0 sqrt
n_iter_no_ change 100 1000
ANN Batch size 15 16
Optimizer Adam RMSprop
Initial learning rate 0.000444 0.000303
Loss huber loss huber loss
Learning rate scheduler True True
Start epoch 12 12
Learning rate decrease 0.822637 0.801706
Every N epoch 8 7
Early stopping True True
Patience 7 9
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Figure 4.1: The ANN architectures found during the HPO are shown. The left side displays
the architecture for predicting PMs 5, and the right side displays the architecture used
for predicting NOs. Both networks are kept relatively simple concerning the number of
layers and units per layer compared to the initial search space. Regularization techniques
such as a dropout or normalization layer were used, and another fully connected layer
(FCL) was applied after the concatenation. The right network added a 1D convolutional
layer (ConvL) with a kernel size of six time steps as a feature extractor as the first layer.
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Table 4.3: Descriptive statistics with regards to the MAE of each HP combination for
the different ML algorithms, excluding the ANN are shown. Similar patterns for the
minimum, maximum, mean, median MAE and the standard deviation can be seen for
both pollutants for all regressors. The algorithms are sorted due to the number of
optimized HPs in increasing order.

MAE PM, 5 MAE NO,
Min | Max | Mean | Median | Std | Min | Max | Mean | Median | Std
Ridge 3.17 | 5.09 | 3.32 3.18 [0.28 590 | 8.40 | 6.13 590 |0.38
Linear SVR | 3.08 | 9.71 | 3.60 3.13 1.06 | 5.91 | 16.80 | 6.85 5.97 1.92
Lasso 3.15 | 5.42 | 3.77 316 [0.94|580| 9.31 | 6.74 5.82 1.36
GBR 3.07| 826 | 3.64 3.13 [0.88]5.55|15.82 | 6.55 5.71 1.50

Algorithm

deviation, and the GBR the lowest minimum and median MAE for both pollutants.

4.2. Scenario 1

With the found HPO presented in the previous section, this and the follow-
ing sections deal with the results regarding the overall research question. More
specifically, all evaluated ML algorithms were trained with the previously found
HP to predict samples belonging to the time range of the test set (2022-06-01 to
2022-12-31) at all in-situ stations shown in Table 3.2. The corresponding results
are compared against the CAMS prediction as the baseline. Table 4.4 depicts the
overall performance of the different ML algorithms predicting the next 23 hours of
PMs 5 or NO, for S1. The performance was measured using the MAE.

Since the different learning algorithms’ objective was to reduce the MAE, this
metric is also used for the overall comparison of the results displayed in Table 4.4.
The RMSE is only calculated and presented as a measure to compare against similar
experiments from literature (Bertrand et al., 2023). Compared against CAMS,
it can be seen that all locally employed algorithms outperformed the regional
forecast. Generally, a higher percental improvement can be noticed for the NO,
forecast than for PMs 5. The lowest improvement for both target pollutants can
be observed for the bias-corrected CAMS (CAMS BC) as employed by EEA, 2023.
Additionally, a higher performance gain can be observed if CAMS was included
as input for the different ML algorithms for PM; 5 in contrast to NOy. While the
average improvement for NO, is below 5%, it is above 10% for PMj 5. The overall
improvement against CAMS varies from 13.05% (ANN) to the highest reduction of
19.32% (GBR) for predicting P M, 5 while CAMS was not included as input. When
CAMS served as additional input, the performance variation between the different
ML algorithms is lower. The improvement ranges from 27.68% (Ridge) to the
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Table 4.4: The table represents the results of S1 with PM, 5 and NOs as target pollutants. It shows the average MAE and root
mean squared error (RMSE) and R? of the regional forecast as baseline (CAMS) and compares all applied learning algorithms by
providing the percental reduction towards CAMS. Furthermore, the prediction error of the locally bias-corrected CAMS prediction
(CAMS BO) is shown. The highest percental reduction of the error with and without CAMS as input for the different ML algorithms
is highlighted in bold. Comparable results from the literature are displayed at the bottom of the table.

PM,. NO2
Algorith Reducti Reducti

SOHHI CAMS MAE RMSE gz neduction (0) o vap Rrusp g eduction (%)
MAE RMSE MAE RMSE

CAMS ~ 38 617 0379 00 00 ~ 989 1421 -0011 00 00
CAMS BC _ 372 598 0422 287  3.08 - 753 1056 04l 2376  25.68
ANN No 333 551 0501 13.05 1070 | No 634 91 0585 35890 35.96

Yes 271 483 0621 2924 2172 | Yes 634 916 0576 35.80 3554

Lasso No 318 523 0547 1697 1524 | No 620 874 0.622 3640 38.49

Yes 275 474  0.632 2820 23.18 | Yes 579 814  0.67 A146 4272

Ridge No 318 52 0.552 1697 1572 | No  6.35 875 0.621 3579 38.42

Yes 277 476 0629 27.68 22.85 | Yes 583 817 0.667 4105 4251

Linear SVR No 313 533 0527 1828 1361 | No 621 884 0614 3721 37.79
Yes 269 477 0628 29.77 2269 | Yes 585 833 0654 4085 41.38
GBR No 309 522 0551 19.32 1540 | No 585 83 0.659 40.85 41.59
Yes 276 487 0613 27.94 2107 | Yes 544 777  0.699 44.99 45.32

Bertrand et al., 2023

CAMS Literature - - 8.6 - - 0.0 - - 12.6 - - 0.0

RF Literature - - - - - 22.00 - - - - - 33.00
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best-performing model for predicting PM, 5 with 29.77% (Linear SVR). Shifting
the focus on the prediction of NO, the lowest performance gain can be observed for
the Ridge regression (35.79%) without CAMS as additional input. As for PM, s,
the highest improvement without CAMS is achieved from the GBR (40.85%). If
CAMS served as additional input, by far, the nethermost gain can be noted for the
ANN (35.89%). Notably, the ANN’s result is not improved over the local prediction
without CAMS. In contrast, the highest performance gain is achieved again by the
GBR (44.99%). Turning the attention to the R?, it can be seen for PM, 5 that the
Lasso algorithm has the highest amount of explained variances in the observed data
(0.632 or 63.2%) if CAMS was included and the similar Ridge regression the highest
if no CAMS was incorporated as additional input (0.552). Both algorithms yield a
higher R? compared to the CAMS prediction and explain 25.3% and 17.3% more of
the variability in the observed data, respectively. By shifting the focus on the R?
of the NO, predictions, the negative R? for the CAMS prediction is most notable.
This results from the fact that the prediction is, on average, worse than the case if
the mean value of the observations had been predicted for all samples. Even though
the performance gain in explained variability regarding the CAMS prediction is
higher than for the other metrics, the highest gain is also achieved by the GBR.
Without CAMS as additional input, the GBR can explain 0.659 of the variability
of the observed data. Similarly to the other metrics, this value increases by a small
margin when MOS is applied (0.699). Overall, the coefficient of determination
reflects the performance of the different ML algorithms if compared based on the
MAE and RMSE. In comparison to the results achieved by Bertrand et al., 2023,
it can be seen that for predicting P M, 5, a similar performance can be observed for
RMSE with 23.18% in this research and 22.00% in Bertrand et al., 2023. A higher
difference can be noticed for NO,. Here, the percental reduction for RMSE against
CAMS in this research is 45.32% compared to 33.00% stated by Bertrand et al.,
2023. It should be noted that in both cases (PMsy5 and NOs), the underlying data
set is not the same. While this study focuses on urban environments, Bertrand
et al., 2023 includes stations located in the country site, as well. The following
subsections unfold a more detailed view of the results of predicting the two target
pollutants.

4.2.1. PM,;

Focusing on the prediction of PM, 5 Figure 4.2 shows the distribution of the
MAE in predicting the next 23 hours per station and algorithm displayed as a
boxplot. Compared to the overall mean MAE shown Table 4.4, Figure 4.2 shows
similar patterns. All ML algorithms have a lower median MAE than CAMS and
CAMS_ BC, which is further reduced when CAMS is included as input to the
learning algorithms (blue boxes). Figure 4.2 additionally shows the spread of the
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Figure 4.2: Comparison of different regressors predicting PMs 5. The presented results
reflect the results given in Table 4.4 so that based on the median lines, the central
tendency of all employed ML algorithms is lower than for the regional forecasts (CAMS,
CAMS_ BC). Even though the spread of the predictions has a similar range between
the whiskers, a clear spread shift can be noticed from the regional forecast to the ML
algorithms predicting PMy 5 without incorporating CAMS (green boxes). Remarkably,
all ML algorithms can reduce not only the median line while incorporating CAMS as
input (blue boxes) but also the spread of data points that lay between the median line
and the lower bound of the boxes (Q1).

MAE between measured and predicted values at each station.

It is notable that while the spread around the median line follows similar patterns
in all predictions (the distance between the median line and the upper whisker is
higher than to the lower whisker, showing a higher divergence from the median line
for higher MAE), the overall spread is shifted around the reduced median MAE of
the different ML algorithms. Interestingly, when CAMS is included as input, not
only the median MAE is lowered, but also the spread of data points that lie between
the median line and the lower bound of the boxes (Q1) is reduced. Figure 4.3 shows
the average prediction error per hour, comparing the different local ML against
the regional CAMS predictions when no MOS is applied. The best-performing
algorithms from Table 4.4 are presented, and the ANN is additionally included
as the most complex model. It can be seen that both local ML algorithms show
similar patterns in contrast to the regional CAMS forecast. While the regional
forecast yields a relatively stable (higher) MAE over the day, for the two local ML
approaches, the average MAE is increasing over the day, leading to the highest
error at the end of the horizon (20 to 23 hours ahead). While the difference of the
average MAE at prediction time step t+1 (1 a.m.) between the local approaches
and regional prediction is highest (approximately 2 ug/m? PM,3), it gradually
decreases to a similar error at 11 a.m., staying similar for the rest of the day.
Regarding the MSD, both local ML algorithms are first overestimating the PM, 5
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Figure 4.3: Displayed is the average MAE on the left and the mean signed deviation
(MSD) on the right per hour of the day for the CAMS and local ML predictions. No
MOS was applied. While ANN and GBR show similar patterns, the average error of
CAMS diverges. For the MAE, the highest difference can be observed before 11 a.m.
Additionally, the CAMS prediction shows a higher amplitude for its peaks at 5 a.m. and
11 a.m.

concentration before 10 a.m. and then underestimating the measures after 10
a.m. A higher MSD can be observed for the CAMS prediction. It shows a higher
amplitude of the peaks at 5 a.m. (overestimation) and 11 a.m. (underestimating).
Notably, all predictions show at least a small peak at 11 a.m. for the MAE and
MSD. While Figure 4.3 compared the average hourly error between the local and
regional approaches without applying MOS, Figure 4.4 compares the average hourly
error when MOS is utilized. The prediction errors for the ANN, GBR, CAMS, and
bias-corrected CAMS (CAMS_ BC) are shown. Even though a high resemblance
can be observed between the locally applied ML algorithms, some differences can
be seen. Most importantly, an overall reduction of the average MAE of the ML
algorithms leads to an in Figure 4.3 previously unseen gap between the CAMS
prediction error and the local ML learning prediction errors after 11 a.m. The
overall MAE for the ANN is reduced by 0.62 from 3.33 to 2.71, and the MAE for
the Linear SVR by 0.4 from 3.09 to 2.69. Apart from the overall reduction of the
average MAE, the small but continuously higher MAE for the ANN compared to
the SVR disappears after 3 a.m. if CAMS serves as additional input.

Interestingly, even though the applied method to bias correct CAMS lowers the
MSD close to zero, CAMS BC is only yielding a slight reduction of the MAE
compared to the raw CAMS prediction. Figure 4.5 shows a sample prediction of
one week for a station in Frankfurt. At midnight, the different models predict
the PMs 5 concentration for the next 23 hours, incorporating one or more past
time steps. Seven predictions (highlighted as dashed vertical lines) are performed
sequentially in total.
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Figure 4.4: As in Figure 4.3, the hourly average MAE and MSD of the predictions
are displayed on the left and right, respectively. In contrast, MOS is applied. The
locally bias-corrected CAMS prediction (CAMS_ BC) is also displayed. There is a high
pattern resemblance between the local prediction errors compared to Figure 4.3 with a
few exceptions. Additionally, an overall reduction of the average MAE can be seen for
the locally applied ML algorithms, which leads to a previously in Figure 4.3 unseen gap
between the CAMS prediction error and the local ML learning approaches after 11 a.m.

—— Measured —— CAMS CAMS_BC ANN ANN + CAMS  —— LinearSVYR —— LinearSVR + CAMS

PM,.5 u/m?3
[
w

Hour of the day

Figure 4.5: A one-week example prediction for a station in Frankfurt is shown. The
model with the lowest MAE (Linear SVR) and most complex (ANN) are displayed. The
different predictions are compared against the measured data. “Model forecast [t+1]”
refers to the vertical dashed lines and indicates the first prediction of the different models
for the time step t+1. It can be seen that, especially at midnight, high peaks of measured
PDMs 5 concentration are captured more accurately by the local ML prediction, which
reflects the patterns shown in Figure 4.3 and Figure 4.4.

The sample prediction underlines the patterns seen in Figure 4.3 and Figure 4.4.
During the first hours of the day, the local ML predictions are more capable of
following the peak concentrations than the regional forecast CAMS. Except for the
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ANN, not including the CAMS prediction, all locally applied ML algorithms show
similar patterns to each other. While it is challenging to capture sudden measured
concentration peaks or drops, generally, they are more often captured during the
first hours of the predictions. Notably, sudden concentration drops in the afternoon
are often not captured by any prediction. Figure 4.6 shows a confusion matrix
of the predicted and true labels if PMs, 5 concentration is categorized into the
proposed air quality indices shown in Table 1.1. The assignment was performed
for each hour. Note that the employed algorithms were not trained to perform a
classification task. Instead, the predicted and measured concentration values were
subsequently assigned to the proposed categories. From Figure 4.6, it can be seen
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Figure 4.6: Comparison of the classification into the different air quality indices defined
by the European Environmental Agency (EEA) and shown in Table 1.1. The number
of predicted hours per class is stated in brackets, and the annotations show the relative
number of samples. It can be seen that the Linear SVR, as algorithm with the lowest
MAE, has slightly but continuously higher true positives for all classes.

that concentration levels that appear rarely are also detected relatively seldom in
comparison to the classes represented more often. Still, the class indices “Very poor’
and “Extremely poor” are captured more often by the SVR. While the Linear SVR
detects 17.3% and 4.85% percent of the “Very poor” and “Extremely poor” labeled
classes, the CAMS prediction only detects 5.72% and 0%, respectively. Generally,
the regional forecast underestimates the measured PMs 5 concentration more often
compared to the Linear SVR. After the predictions of PMs 5 concentration were
elaborated in more detail, the focus shifts to the estimation of NO, concentration
in the following section.

?
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42.2. NO2

Figure 4.7 shows analogical to Figure 4.2 the distribution of the prediction
MAE over all elaborated stations measuring NO,. It compares the MAE of
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Figure 4.7: The box plots outline the MAE distribution of the employed regressors for
predicting NO, at each target station. Similar to Figure 4.2, all locally applied ML
algorithms outperform the regional forecasts, with an additional relatively small reduction
of the median MAE (except for the ANN), when CAMS served as additional input.

the different regressors predicting NO, for the elaborated stations. CAMS and
CAMS_ BC represent the regional forecast, whereas the latter is bias-corrected to
incorporate the past local pollutant measurements. Similar to Figure 4.2, it can be
seen that all learning algorithms that utilized local measurements outperform the
CAMS prediction (green boxes). Moreover, all algorithms, except for the ANN,
decrease the median MAE further while CAMS was incorporated. The relative
reduction is lower compared to Figure 4.2, which is also reflected through the
average MAE shown in Table 4.4. The CAMS prediction has a relatively higher
spread compared to the other regressors, in contrast to Figure 4.2. Additionally,
the relative reduction of CAMS BC towards CAMS is more distinct. Furthermore,
the number of represented outliers above the median line increases except for the
Ridge regression. Following the overall MAE and different error distributions,
Figure 4.8 shows the average errors per hour and algorithm. The displayed local
ML algorithm did not include the CAMS prediction as additional input.

Even though all presented algorithms reveal a similar pattern, a clear gap
between the locally applied predictions and the regional forecast can be observed,
with the highest error for the CAMS prediction between 7 a.m. and 9 a.m. and for
the local predictions towards the end of the day. While the MSD for the ANN and
GBR are relatively stable throughout the day compared to the CAMS prediction,
the latter depicts a relatively high underestimation, with its average peak of 10
pg/m3 NOy concentration at 9 a.m. The lower average prediction MAE from
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Figure 4.8: Similarly to Figure 4.3, the average hourly MAE (left) and MSD (right) were
calculated based on the NOs predictions for all evaluated measurement stations, without
incorporating MOS. Even though all MAE follow a similar pattern, a clear gap can be
observed between the local ML and regional CAMS predictions. Moreover, the latter
shows a relatively high underestimation (reflected by the MSD) compared to the local
predictions.

the GBR, as already shown in Table 4.4, results from a slightly more accurate
prediction before 10 a.m. and after 17 o’clock against the predictions achieved by
the ANN. The prediction MAE in the hours between is nearly identical. As for
PM, 5 Figure 4.9 displays the average hourly prediction errors for predicting the
NOs; concentration when CAMS was incorporated.

The average hourly MAE and MSD for the regional forecast CAMS, the bias-
corrected CAMS (CAMS_BC) and the locally applied ML algorithms ANN and
GBR are displayed. While the average MAE for the ANN is not changing, the
GBR can further lower the average MAE, leading to a wider gap between the two
ML algorithms. Even though the MSD for both algorithms is relatively stable
compared to the CAMS prediction, a slight underestimation (~2 ug/m?®) between 7
a.m. and 9 a.m. can be noticed. As in Figure 4.4, the bias of the CAMS prediction
reflected with the MSD per hour can be reduced to close to zero by employing
the CAMS_ BC prediction. In contrast, though, this leads to a relatively higher
reduction for the MAE of the N O, prediction (23.76%) compared to PM, 5 (2.87%),
as can be seen in Table 4.4. After the overall performance of the different models
was evaluated in general and with regards to the MAE and the MSD, Figure 4.10
depicts a one-week sample prediction for a station in Frankfurt.

Figure 4.10 shows an exemplary prediction for a single station inside Frankfurt.
Even though the applied ML algorithms often capture concentration peaks in the
first half of the day accurately, a second peak on the third day is not predicted
by any model. Nevertheless, it is interesting to see that the locally employed ML
algorithms anticipate a concentration raise at the end of the day. Furthermore, it
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Figure 4.9: As in Figure 4.8 the average hourly MAE (left) and MSD (right) is presented,

employing MOS. While MSD of the ANN and the GBR are relatively stabilized, the

latter can further decrease the MAE. The bias-corrected CAMS (CAMS_BC) is also

displayed. Similarly, the hourly bias indicated on the right can be reduced to close to

zero. In contrast, the impact of the relative decrease on the MAE is higher, as can be
seen in Table 4.4.
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Figure 4.10: A one-week example prediction for a station in Frankfurt is shown. The
model with the lowest MAE (GBR) and most complex (ANN) are displayed. The different
predictions are compared against the measured data. “Model forecast [t+1]” refers to the
vertical dashed lines and indicates the first prediction of the different models for the time
step t+1. It can be seen that especially during the first half of the day, high peaks of

measured NOs concentration are captured more accurately by the local ML prediction,
which reflects the patterns shown in Figure 4.8 and Figure 4.9.

can be seen that in this one-week sample, the CAMS_ BC prediction underestimates
the measured prediction more often than the original regional prediction CAMS.
Figure 4.11 displays, similar to Figure 4.6, a confusion matrix of the predicted
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and true labels, if the NOs concentration is categorized into the air quality indices
shown in Table 1.1. Because the categories “Very poor” and “Extremely poor” are

CAMS (F1-score: 0.87) GradientBoosting (F1-score: 0.92)
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Figure 4.11: Comparison of the classification into the different air quality indices defined
by the EEA and shown in Table 1.1 are depicted. The number of predicted hours per
class is stated in brackets, and the annotations show the relative amount of samples.
It can be seen that while CAMS predicts the class “Good” more accurately, the GBR
detects higher values more often.

neither measured nor predicted for NO,, they are not displayed in Figure 4.11
in contrast to Figure 4.6. A comparison between the CAMS regional prediction
and the GBR with the lowest MAE in Table 4.4 is presented. While the CAMS
prediction is slightly more often able to predict the concentration level labeled
as “Good” (4 0.8%), the GBR detects the classes “Fair” and “Moderate” more
accurately (+36.1% and +2%, respectively). Notably, the GBR more often predicts
a neighboring class, as in the true label as “Moderate” and the predicted as “Fair”.
Furthermore, neither of the algorithms can detect the measured 35 hours labeled
as “Poor”.

4.3. Scenario 2

After stating the results for S1 to answer the research question, if regional
forecast can be improved locally in an urban environment using ML, this section
presents the results for S2, in which it will be elaborated if the previously achieved
performance of S1 can be improved by incorporating the information of neighboring
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stations. In S2, the neighboring stations were additionally trained to predict the
pollutant concentration at the target station. The different predictions at one
location were averaged for each hour. A more detailed description of the different
scenarios can be found in Section 3.3.4. Table 4.5 depicts a comparison against
the regional forecast CAMS and if each locally applied algorithm for S1 can be
improved.

Table 4.5: A comparison between the results achieved for S2 in comparison to the regional
CAMS prediction and the results achieved for the experiments of S1 is presented. For
each algorithm employed, the percental difference is stated. Even though all algorithms
yield a lower MAE than the CAMS prediction for PMs 5 and NOs, only a slight reduction
can be observed for most of the algorithms predicting PM, 5.

PMss NO?2
Algorithm CAMS MAE Reduction (%) CAMS MAE Reduction (%)
CAMS S1 CAMS S1
CAMS - 3.83 - - - 9.89 . ,
ANN No 3.30 13.84 0.90 No 7.13 2791 -12.46

Yes 287 26.07 -5.58 Yes 6.76 31.65 -6.62

Lasso No 3.13 1828  1.57 No 6.41 3519 -191
Yes 2,73 28.72  0.73 Yes 5.95 39.84 -2.76

Ridge No 3.08 1958 3.14 No 6.48 3448 -2.05
Yes 2,716 2794  0.36 Yes 5.92  40.14 -1.54

LinearSVR No 3.18 1697 -1.60 No 6.51 3418 -4.83
Yes 2.67 30.29 0.74 Yes 6.02 39.13 -291

GBR No 3.03 20.89 194 No 5.92 40.14 -1.20
Yes 2.71 2924 1.81 Yes 59.59  43.47 -2.57

It can be seen that while all algorithms can reduce the MAE in comparison with
CAMS when predicting PMs 5 and NO,, only a slight reduction can be observed
for the majority of algorithms predicting P M, 5 if compared against the predictions
of S1 stated in Table 4.4. Indeed, for NO,, only an increase of the MAE can
be seen when compared against the S1 prediction. Noticeably, the ANN has the
highest increase in MAE compared against S1, with 12.46% and 6.62% above the
MAE with and without CAMS as input, respectively. It should be highlighted
that the HP shown in Table 4.2 and Figure 4.1 were not used in nor optimized for
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S2. Figure 4.12 compares the predictions for S1 and S2 concerning the ANN and

CAMS, if no MOS is performed.
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Figure 4.12: Comparison of the ANN trained for S1 and S2 (shown in the brackets)
without MOS. The average hourly MAE and MSD are displayed on the left and right,
respectively. While both ANN predictions have a lower MAE than CAMS throughout
the day, the results for S2 are also continuously lower than the ones achieved for S1.

The ANN for the two scenarios can continuously lower the average MAE per
hour compared to CAMS. Even though the ANN predictions follow similar patterns
for MAE and MSD, a slight increase in MAE can be observed if the neighboring
stations are included (S2). Also, an increase for the MSD resulting in a slight
pattern shift can be noticed. Figure 4.13 compares the predictions for S1 and S2
with respect to the ANN and CAMS, while MOS was applied.
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Figure 4.13: Comparison of the ANN trained for S1 and S2 (shown in the brackets) with
MOS. The average hourly MAE and MSD are displayed on the left and right, respectively.
Even though the ANN employing neighboring stations in S2 still achieves an overall
higher MAE compared to S1, the difference is not as distinct as without MOS.
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As in Figure 4.12, both ANN achieve a lower MAE as the regional forecast
CAMS. In contrast, the ANN predictions for S2 show no apparent difference in the
first hours of the day. Furthermore, the overall introduced bias while neighboring
stations were incorporated is lower than for Figure 4.12. After the description of
S2, the focus is shifted to S3, where the historical pollutant measurements at the
target stations were excluded.

4.4. Scenario 3

This section presents the results of the different ML algorithms for S3. S3
dealt with the question how accurate the target pollutant concentration can be
estimated at a target point in an urban environment, when neighboring stations are
included. The neighbors were combined by averaging the prediction of each station
at the target location. A more detailed description can be found in Section 3.3.4.
Furthermore, the experiment was performed with and without the regional forecast
CAMS as additional input to investigate the impact on the predictions. Table 4.6
presents the results compared to the CAMS forecast.

Noticeably, except for XGBoost_ OM, all ML algorithms can reduce the overall
MAE compared to the regional forecast CAMS by incorporating CAMS as additional
input. The highest reduction against the CAMS prediction MAE was achieved by
the GBR, with 15.14% for PM, 5 and 18.71% for NO,. While this shows similar
results compared between the two target pollutants, more distinct differences can be
observed if CAMS did not serve as additional input. While for PM, 5, all employed
ML algorithms achieve a lower MAE compared to CAMS, predicting NO, from
neighboring stations often yields a higher MAE. More specifically, the highest MAE
reduction against the CAMS only using neighboring stations is achieved by the
ANN with 10.18% compared to the highest reduction of NO, against CAMS for
the GBR with only 1.82%.

The specific cases for predicting the two pollutants at a target location are shown
in the lower part of Table 4.6. They include the GBR incorporating the distance to
the target point (GBR,_Dist) and the XGB utilizing each of the neighboring stations
simultaneously (XGBoost_ OM). Since there was no HP tuning performed for the
XGB in any scenario, the average prediction as for the other algorithms is also
stated with default HP settings for the XGB (XGBoost). While investigating the
specific cases, it is evident that the employed ML algorithms for PM> 5 also reduce
the MAE compared to CAMS, even though the MAE is higher in contrast with the
associated counterparts GBR for GBR__ Dist and XGBoost for XGBoost_ OM. After
establishing the overall results for S3, the two target pollutants are investigated in
more detail in the following subsections.
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Table 4.6: The results achieved during the experiments concerning S3 are presented.
Differences can be observed in the results for PMs 5 and NOo. While the prediction
of both pollutants yields a lower MAE than CAMS if MOS is applied (except for
XGBoost__OM), only the ML algorithms predicting PMs 5 achieve a reduced MAE
compared to CAMS. The lower part of the table shows the GBR when the distance to
the target is included (GBR_ Dist) and the extreme gradient boosting (XGB) algorithms,
including all neighboring stations simultaneously (XGBoost_ OM).

PM, 5 NO2
Algorithm ~ CAMS MAE Reduction (%) | CAMS MAE Reduction (%)
CAMS - 3.83 0.0 - 9.89 0.0
ANN No 3.44 10.18 No 9.79 1.01
Yes 3.42 10.70 Yes 8.38 15.27
Lasso No 3.62 5.48 No 10.31 -4.25
Yes 3.35 12.53 Yes 9.19 7.08
Ridge No 3.55 7.31 No 10.30 -4.15
Yes 3.35 12.53 Yes 9.14 7.58
LinearSVR No 3.47 9.40 No 9.80 0.91
Yes 3.27 14.62 Yes 8.90 10.01
GBR No 3.47 9.40 No 9.71 1.82
Yes 3.25 15.14 Yes 8.04 18.71
GBR_Dist No 3.80 0.78 No 9.71 1.82
Yes 3.61 5.74 Yes 8.37 15.37
XGBoost No 3.61 5.74 No 10.28 -3.94
Yes 3.43 10.44 Yes 8.87 10.31
XGBoost_ OM No 3.74 2.35 No 11.44 -15.67
Yes 3.501 8.36 Yes 11.71 -18.40
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44.1. PM,;

Figure 4.14 depicts the distribution of the MAE, comparing the CAMS predic-
tions against the locally applied ML algorithms for PMs 5 for S3.
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Figure 4.14: The distributions of the MAE are shown for predicting all elaborated target
points for each applied algorithm. While all locally employed algorithms median line is
lower compared to CAMS and all ML algorithms can reduce the median MAE per target
point further if CAMS is included as additional input, for the ANN, Linear SVR and
GBR outliers can be observed, for which an increased MAE was achieved.

Similarly to Figure 4.2, all median lines of the locally applied algorithms yield
a lower MAE in predicting PMs 5 compared to CAMS. As Table 4.6 suggests,
the reduction is less distinct compared to S1. While an additional reduction in
the median station MAE was achieved by incorporating the CAMS prediction
for nearly all algorithms, a higher amount of outliers above the median were also
induced, some even extending the outlier in the CAMS prediction (ANN, SVR,
GBR). Even though there are no clear patterns of the data distribution visible
across all employed algorithms, some algorithms narrowing the spread if CAMS is
included as additional input (ANN), other algorithms do not show a comparable
change. In general, though, it can be seen that the data distribution above the
median has a higher spread than below.

After showing the distribution of the MAE resulting from the predictions per
target point and algorithms, Figure 4.15 shows the average error per hour of the day
for all target points predicted in S3. No MOS was applied in this setup. Similarly
to the results achieved for S1, the ANN and GBR particularly yield a lower but
less distinct average MAE before 11 a.m. compared to the CAMS forecast. In
contrast, the CAMS prediction returns a slightly lower MAE after 11 a.m. for
the rest of the day. For the MSD, the GBR and the ANN show nearly identical
patterns compared to S1, except that for the latter, a slight shift to an overall
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Figure 4.15: The average MAE on the left and the MSD on the right per hour of the day
for the CAMS and local ML predictions is displayed. No MOS was applied. The lower
overall MAE for the ANN and GBR compared to CAMS was achieved during the first
half of the day. For the MSD, the GBR and the ANN show nearly identical patterns
compared to S1, except that for the latter, a slight shift to an overall increased MSD can
be noticed.

increased MSD can be noticed. Figure 4.16 presents the average hourly prediction
errors when MOS was applied. It can be seen that while the ANN was only able to
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Figure 4.16: The average hourly MAE (left) and MSD (right) if no MOS is applied are
shown. While a negligible reduction in MAE can be noticed for the ANN, the GBR is
capable of slightly reducing the average MAE further throughout the day compared to
the ANN and CAMS, even though a slight increase can be noticed in MSD in comparison
when no MOS is applied.

negligible decrease the MAE if CAMS was included, the GBR is able to reduce
the MAE slightly. On the other hand, the overall MSD is reduced by the ANN,
whereas a slight increase can be observed for the GBR compared to Figure 4.15.
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Comparing S3 with the results from S1 (Figure 4.4) for the prediction of PM, 5,
it can be seen that the average hourly error patterns are similar. In particular, if
no MOS was applied, both scenarios show that the overall lower MAE is achieved
in the first half of the day, with a higher reduction if local measurements are
included as in S1. The second half only shows slight differences, with the ANN
achieving a continuously higher MAE in both scenarios if compared against CAMS
and the GBR a slightly lower and higher MAE compared to CAMS for S1 and
S3, respectively. For the MSD, the differences between S3 and S1 are even less
distinct. A different picture can be seen when comparing S3 and S1 if MOS was
applied. As can be seen from Figure 4.16 (S3) in comparison with Figure 4.4 (S1),
the algorithms employed in S3 can not reduce the average MAE in particular of
the second half of the day as much as in S1. Surprisingly, the MSD does not show
this distinct change while comparing S3 to S1. After presenting the results for
the prediction of PM, 5 in the context of S3 and comparing them against S1, the
following section shows the results for predicting NOs.

44.2. NO,

Figure 4.17 shows the distribution of the MAE for predicting NO, at the
evaluated target points. Noticeably, the spread of 50% of the data points around
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Figure 4.17: The average MAE per evaluated station and different algorithms are
presented. The regional CAMS forecast is compared against the locally applied algorithm,
either without or with CAMS as additional input. While all boxes of locally employed
algorithms show a smaller spread, only the GBR clearly show a reduced median compared
to CAMS.

the median line (boxes) can be narrowed by all locally applied algorithms, in
particular when CAMS was included as additional input. Even though an apparent
reduction of the median MAE over all stations can only be seen for the GBR when
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CAMS was included if compared against CAMS. Figure 4.18 shows the average
hourly prediction errors for NOy when no MOS was applied.
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Figure 4.18: The average hourly MAE (left) and MSD (right) if no MOS was applied are
shown. It can be seen that while the ANN and GBR achieve a nearly identical MAE
throughout the day, they yield a lower MAE compared to CAMS, particularly in first
hours of the day, with the highest difference between 6 a.m. and 12 a.m. and a higher in
the second. Both algorithms also show an increased underestimation of the measured
pollutants in the second half of the day.

Both locally applied ML algorithms show nearly identical error patterns for MAE
throughout the day. While the average MAE per hour is lower in the first half of
the day compared to CAMS when averaging over the predictions of the neighboring
stations (S3), the same can not be seen for the second half. After 12 a.m., the
average MAE shows a clear upward trend, peaking at 18 o’clock. Compared with
CAMS, the gap closes again towards the end of the day. Turning attention to the
MSD, it can be seen that the peak underestimation of CAMS at 9 a.m. is not
mirrored in either of the locally applied ML algorithms. These show an increased
underestimation after 11 a.m. throughout the day, peaking at 16 o’clock for the
GBR and 18 o’clock for the ANN. Figure 4.19 similarly shows the average hourly
prediction errors for the regional CAMS forecast and the predictions of the locally
applied algorithms ANN and GBR, but using the CAMS prediction as additional
input. Similarly to S1 and S2, the average hourly MAE shows an overall upward
trend towards the end of the day, with two peaks at 9 a.m. and 19 o’clock. Also,
an apparent reduction in MAE towards CAMS if compared against Figure 4.18
when no MOS was applied can be seen. While the ANN and the GBR show an
apparent reduction in MAE compared to CAMS throughout the day, the GBR’s
reduction is slightly higher. Interestingly, including CAMS as additional input to
the locally applied ML algorithms is nearly neglecting the previously existing bias
as present in Figure 4.18.
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Figure 4.19: The average hourly MAE (left) and MSD (right) while incorporating MOS
are shown. It can be seen that the ANN and GBR achieved a continuously lower MAE
throughout the day. Furthermore, the previously existing bias (represented by the MSD)
for both algorithms could be reduced to close to zero when compared to Figure 4.18.

4.5. Synopsis

First, the results of the HPO for different ML algorithms are presented in
Section 4.1. For each algorithm, Table 4.1 shows the identified input features and
past time steps included in the prediction of PMs5 and NO,. Similarities and
differences for the HP configuration of the different ML algorithms concerning the
target pollutants can be seen in Table 3.3 and Figure 4.1. Next, the distribution of
the MAE error across the different HP configuration setups is shown for each ML
algorithm. Subsequently, the results corresponding to S1 that support the answer
to the overall research question are presented in Section 4.2.

The results, compared against the CAMS prediction as a baseline, demonstrate
that all locally employed algorithms consistently outperform the regional forecast.
While the lowest error reduction is observed for the bias-corrected CAMS (CAMS
BC), the highest can be noted for the Linear SVR for PM, 5 and the GBR for NO,.
Additionally, when local stations were incorporated, a higher error reduction (or
explained variability) can be seen, particularly for NO, compared against PMs 5.
Furthermore, a higher performance gain (lower error or higher R?) can generally
be noted when CAMS was included as input. The performance gain is higher
for PMs, 5 than for NO,. The increase in performance is compared to CAMS is
underlined in Section 4.2.1 for PMs 5 and Section 4.2.2 for NO,. By investigating
the confusion matrices of the air quality indices, a higher accuracy in predicting
pollutant episodes can be additionally observed for the locally applied algorithms.
A comparison to Bertrand et al., 2023 shows a higher reduction for NO, and similar
results for PM; 5 for the ML employed in this research. Turning the attention to
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S2, the results show that even though the employed ML algorithms continuously
yield a lower MAE compared to CAMS while incorporating neighboring stations,
most algorithms only show a slight improvement towards their counterpart in S1
for PMs, 5. Moreover, all algorithms show a higher error than their counterparts
for predicting NO,, while neighboring stations are included.

The subsequent focus is shifted to S3, where historical pollutant measurements
at the target station are excluded. The results show that most of the ML algorithms
employed to predict a target point from the neighboring stations reduce the overall
MAE compared to CAMS, with the highest reduction achieved by the GBR with
15.14% and 18.71% for PM, 5 and NOs, respectively, while incorporating CAMS.
If CAMS is not included as additional input, the results are less consistent, though
only achieving a consistent performance for PMs 5. It should be noted, however,
that all locally employed ML algorithms are only optimized on a subset of S1, that
might not reflect S2 and S3 as well. Additionally, for other target pollutants, the
results could indicate a more positive influence for both scenarios.

In conclusion, it can be seen that while S1 and S2 show a high reduction in
comparison to the CAMS prediction, S3 only shows a comparably lower reduction.



Chapter

Discussion

In the following, the conclusion of this study will be drawn and discussed,
followed by a summary of the work’s contributions and an outlook for future work.

5.1. Conclusion

The primary research question addressed in this study was how machine learning
(ML) algorithms could improve regional forecasts of the next 23 hours in a local
urban environment. The results obtained during Scenario 1 (S1) unequivocally
support a positive answer to this question. All locally employed ML algorithms
consistently outperformed the regional Copernicus Atmospheric Monitoring Service
(CAMS) forecast, with notable improvements in mean absolute error (MAE), root
mean squared error (RMSE), and R?. More particularly, as can be seen in Table 4.4,
the Linear support vector regressor (SVR) as best performing locally employed
ML algorithms, when compared based on MAE, achieved a MAE of 2.69 ug/m?
compared to 3.83 ug/m? by CAMS, representing an error reduction of 29.77%
while predicting fine particulate matter with a diameter < 2.5ug/m3 (PM,ys).
A similar picture can be seen for predicting nitrogen dioxide (NO;). Here, the
gradient boosting regressor (GBR) reached a MAE of 5.44 ug/m? compared to 9.89
pg/m? achieved by the regional CAMS forecast, which even displays a reduction of
44.99% towards CAMS, highlighting the particular use of local measurement for
predicting NOy in urban environments. Even though there are two distinct locally
applied ML algorithms achieving the lowest MAE, the margin towards the other
ML algorithms is sometimes close for the prediction of NO, and nearly negligible
for the prediction of PMs 5. It is noteworthy that contrary to the implication of
the superior prediction performance for the different variations of the artificial
neural network (ANN), suggested by a majority of scientific articles throughout the
literature, the ANN is not surpassing the prediction performance of the other ML
algorithms. Generally, all locally employed ML algorithms benefit from applying
model output statistic (MOS) by incorporating the CAMS prediction as additional
input, with one exception. The ANN does not seem to be able to make use of
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the CAMS prediction as additional information to forecast NOs, achieving the
same MAE with and without applying MOS. This might be due to the complex
nature of terms of adjustable parameters of the ANN, which were optimized during
the hyper parameter (HP) search. Since the search was performed on a subset of
three randomly chosen stations, the ANN’s HPs might have been overfitted to the
specific in-situ measurement stations so that a generalization to other station from
the data set was not accomplished as good as for the other ML algorithms. To
overcome this adjustment to a selected subset of stations while keeping a similar
data set size, one might perform a semi-random selection of individual samples
balanced over all stations, seasons, and weekdays to better represent the entirety
of the underlying data set.

While interpreting the R?, a similar but sometimes more distinctive pattern can
be seen. The highest R? value corresponds to 0.632 or 63.2% of explained variance
achieved by the Lasso algorithm compared to 37.9% for the CAMS prediction.
This highlights, that the choice of the metric used to measure the performance
is essential and might lead to a different best-performing algorithm, even though
the underlying prediction for the calculation is the same. For example, the best-
performing model for predicting PMs 5 with regards to MAE is the GBR whereas
the Lasso algorithm outperforms the GBR considering the R?. The reason for this
could be the higher sensitivity of the R? to outliers, for example, represented as
episodes of pollutant concentrations, and the ability of the Lasso algorithms to
capture this episode more accurately. Particularly for NO,, the R? shows a higher
improvement towards the CAMS predictions compared to the MAE. The GBR
outperforms CAMS with a R? of 0.669 compared to -0.011. The negative R? of the
CAMS prediction shows that the forecast is worse than predicting the mean value
of the observed pollutant concentration and indicates that since the CAMS forecast
models the regional pollutant concentration, the NO, distribution, and dispersion
might only affect a proximate area surrounding the pollutant source compared to
P M, 5, which might exhibit a broader spatial influence. An additional aspect of
the air pollution forecast is to capture high pollutant concentrations. Even though
the algorithms were not trained to categorize the pollutant concentration by the
air quality indices of Table 1.1, it can be seen that the locally employed Linear
SVR and GBR outperform the regional CAMS forecast in predicting PM, 5 and
NOs, highlighted in Figure 4.6 and Figure 4.11, respectively.

While including neighboring stations to predict the target pollutant concentration
at a target station still outperforms the regional CAMS forecast in all employed
ML algorithms (see Table 4.5), only some of the algorithms predicting PM, 5 can
be marginally improved when compared against their counterpart in S1. Moreover,
no algorithm can improve the results for incorporating neighboring stations in the
prediction of NO,, even though the same historical data from the target station is
also utilized. This underlines the previously made statement that the distribution
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and dispersion of NOy impacts a smaller radius surrounding the pollutant sources
than PMs 5 and highlights the difficulty in predicting NO, in a regional context.
Considering the increase in input data (and resulting inference time), including
neighboring stations for Scenario 2 (S2) seems not beneficial. However, the fact
that the different ML algorithms were only optimized for S1 might influence the
results negative. Optimizing the HPs to fit S2 might have a beneficial impact on
the results.

Turning attention to the results of Scenario 3 (S3), where the target point
is only predicted from the neighboring stations, mixed results can be seen in
Table 4.6. While all locally employed algorithms surpass the regional CAMS
forecast in predicting PM, 5, the NO, prediction is only improved (with one
exception) if CAMS served as additional input. Still, the locally utilized GBR can
exceed the CAMS forecast by 15.14% and 18.71% in predicting PMs 5 and NO,,
respectively. Surprisingly, the extreme gradient boosting (XGB), which incorporated
all neighboring stations simultaneously, yielded the lowest performance compared
to all other ML algorithms, for which the predictions from each neighboring station
were only averaged at the target location. Also, including the distance to the target
location as an additional feature worsens the results contrary to the expectations
(see Table 4.6). It is noteworthy that when no MOS was applied, the performance
drop between PMs 5 and NOy diverges.

While for PM, 5, the average pollutant prediction still outperforms the CAMS
prediction continuously (e.g., ANN with 10.18%), averaging the prediction for NOy
does not improve the CAMS prediction. Again, this highlights the local nature of
NOy compared to PM, 5. Investigating other fusion techniques to incorporate the
neighboring stations into the prediction at the target location might be beneficial
for S2 and particularly S3. While the performance in each of the three scenarios
varies, similar distinct patterns for PMs 5 and NOs can be seen throughout the day
(e.g., Figure 4.4 and Figure 4.9). Whereas the prediction MAE for PM, 5 gradually
increases throughout the day, the NO, prediction error shows two peaks in the
morning and the evening. The latter is most probably caused by an increased
pollutant concentration, as can be seen in Figure 3.4. Considering the hours of
the pollutant peak, the high concentration, in turn, is most probably caused by
combustion-driven traffic, again suggesting difficulty in estimating on a regional
scale. A common pattern in the prediction MAE for both pollutants is the overall
increase with rising lead time until the end of the day. This suggests that performing
additional predictions throughout the day most probably decreases the prediction
error in all scenarios and for all employed ML algorithms by a notable margin.
Also, episodes that could not have been expected at midnight could eventually be
modeled by the algorithms, making them more adaptable to sudden changes in
pollutant concentration.

Focusing on the results obtained during the hyper parameter optimization
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(HPO), it has been shown that treating the selection of input features and the
number of look back time steps as additional HPs allowed the ML algorithms to
match the inputs and the choice of ML dependent HPs, resulting in different subsets
of data for each algorithm, which would not have been possible by a preliminary
selection of inputs that does not include the different employed ML algorithms.
For some of the explored HPs, the algorithm identified parameter values that are
close to the border of the search space (e.g., 14.807459 and 14.990312 of the Ridge
regressions “alpha” values are close to 15). Here, iteratively, widening the search
space might yield a better performance.

Putting the results into the perspective of the compared literature by Bertrand
et al., 2023, it is notable that even though the results can be compared with the
ones achieved during this research by looking at the percental reduction of each
locally applied algorithm towards the regional forecast CAMS, the underlying data
set of both studies differs, making the comparison nontrivial. Nevertheless, this
research slightly outperformed the locally employed algorithms from Bertrand et al.,
2023 regarding P M, 5. However, the initial RMSE of 8.6 ug/m? achieved by the
CAMS prediction is substantially higher than for the data set utilized in this study
with 6.17 pg/m?, arguably reducing the margin of improvement in this research.
When turning attention to the prediction of NOs, a more apparent improvement
can be noticed for the GBR employed during this research. While Bertrand et al.,
2023 achieved an improvement of 33% over the RMSE of the CAMS prediction, the
locally employed GBR manages to reduce the error by 45.32%. Arguably, the initial
RMSE of the CAMS prediction of NOy is with 14.21 ug/m?, higher than the one
stated by Bertrand et al., 2023 with 12.6% so that the previously made statement
for PMs 5 now holds in favor of Bertrand et al., 2023 for the prediction of NOs.
Another aspect is the amount of effort spent to collect, merge, and preprocess the
underlying data set, which is necessary to answer the research question, particularly
concerning MOS, and fulfills the requirements identified during the literature review.
Here, a benchmark data set would substantially reduce the time for the research
questions to be answered and simplify the comparison across different research
from literature.

5.2. Summary of Contributions

It has been shown in this thesis, from different perspectives, that utilizing ML
in combination with MOS improves the regional forecast of the target pollutants
outstandingly in urban environments, especially when there is a pollutant mea-
surement station at the particular target point. Nevertheless, the results are also
promising when the prediction at a target point is interpolated from neighboring
stations, showing the potential to yield improved results by incorporating the
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spatial dimension. In both cases, the regional forecast can be improved, implying
the practical use in urban environments to protect people from high pollutant
concentrations.

5.3. Future Research

While the application of ML in urban environments to improve regional forecast
has been thoroughly investigated from different perspectives, it still offers many
aspects that can be explored. Here, the question of how to incorporate the spatial
dimension and inter- or extrapolate target points inside an urban environment
opens many research opportunities. In this sense, future research could investigate
the impact when additional information such as vegetation index, traffic patterns,
land use data, or satellite images are provided for the ML algorithms to improve
the MOS capability at a particular target point. More data, on the other hand,
opens the path to research in more complex models that are capable of capturing
the underlying patterns. In particular, an ensemble of algorithms that each capture
and represent patterns in different data modalities might yield promising results.

Because one insight suggested in this research is that the target pollutants PM 5
and NO, behave differently in terms of dispersion and travel time, analyzing the
performance of the proposed ML algorithms for other target pollutants might give
additional, target pollutant dependent insights. Furthermore, the publication of a
suitable benchmark data set that includes the CAMS forecast and relevant local
information is desirable. This would substantially reduce the workload of each
subsequent research by providing a directly utilizable data set and simplifying the
comparison of different MOS algorithms applied in an urban environment across
different research. Another research direction could deal with a feasibility analysis
that investigates the performance of the different locally employed algorithms
on the fly, unveiling the necessary infrastructure and showing the potential for
particular cities when operational.

It has been shown that even though air pollutant prediction has had a long
tradition in research, there are still many aspects that might be explored in future
research, leaving the research domain of air pollutant prediction an exciting field in
literature with many opportunities to identify promising methods that operational
applications can adopt.
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Figure A.1: The neural network architecture found during the HP search for predicting
PMs 5 (left) and NOy (right) are shown. While the number of units per layer sometimes
greatly vary, it can be seen that the overall structure of the network follows a similar
pattern as when MOS was applied. The higher number of long-short term memory
(LSTM) units (463 compared to 92) followed by a stronger regularization through the
dropout layer (0.48 compared to 0.06) is noteworthy.
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Table A.1: The selected inputs for each of the employed ML algorithms are displayed. It
follows similar patterns as Table 4.1 with slight variations (e.g., None of the algorithms

predicting NOs utilized precipitation).

ot PMys NO,
Lasso Ridge SVR GBR ANN | Lasso Ridge SVR GBR ANN
Look back 19 5 2 1 1 9 7 1 1 11
NO, v v v v v v v
NO v v v
O3 v v v v v v
PM,g v v v v v v
P My v v v v v
SO,y
Precipitation [mm] v v v v v
Temperature [C] v v v v v v v v v
Relative humidity [%] | v v v v v v v
Wx v v v v v v v v v v
Wy v v v v v v v v v v
sine [m] v v v v v v v v
cosine [m] v v v v v v
sine [wd] v v v v v
cosine [wd] v v v v v v v
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Table A.2: The results for the HP search, when no MOS was applied are presented.
While some HP diverge between PMs 5 and NOs (the ‘tol’ for Lasso, Ridge and Linear
SVR) others seem to be more consistent (e.g., the loss).

Algorithm Hyper parameter Found value
PMs 5 NOy
Lasso alpha 0.193253 0.181867
tol 0.0008 0.000968
precompute True False
positive True False
selection cyclic random
Ridge alpha 9.470208 14.651283
tol 0.000011 0.000805
solver auto sag
Linear SVR loss epsilon__insensitive | epsilon_ insensitive
tol 0.000407 0.00002
C 0.1 1.0
GBR loss absolute error absolute error
learning_ rate 0.019516 0.024178
n_estimators 500 337
criterion squared__error friedman_mse
min_samples_ split 3 6
min_ samples_ leaf 7 10
max_ depth 5 9
max_ features log2 sqrt
n_iter_no_ change 100000 1000
ANN Batch size 18 12
Optimizer RMSprop RMSprop
Initial learning rate 0.00001191 0.000581
Loss huber loss huber loss
Learning rate scheduler True True
Start epoch 14 12
Learning rate decrease 0.810412 0.777385
Every N epoch 8 4
Early stopping True True
Patience 12 6
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Glossary

Symbols

co

NO

NOo

O3

PM

PMyy

PM; 5

SO,

A
ANN

AOD

carbon monoxide. 1

nitrogen monoxide. 41

nitrogen dioxide. 1, 4, 12, 22, 23, 25,
26, 35-38, 41, 42, 44-47, 51-56, 58, 59,
62-73

ozone. 1, 4, 6, 13, 22, 23

particulate matter. 1, 3, 4, 7, 22, 35

particulate matter with a diameter <
10pg/m3. 1, 4,12, 41

fine particulate matter with a diameter
< 2.5ug/m3. 1,2, 4,5, 9, 11-16, 18, 21,
22, 25, 26, 28, 35-38, 41, 42, 44-51, 53,
56, 58-60, 62, 64-71, 73

sulfur dioxide. 1, 3, 4, 16, 22, 23, 41

artificial neural network. 3, 4, 13, 15,
20, 29-32, 34, 38, 41-45, 47-54, 56-58,
60-64, 66-68

aerosol optical depth. 9-11, 15, 16, 18

CAMS

Copernicus Atmospheric Monitoring Ser-

vice. 8, 21-23, 28, 29, 35-38, 40, 42,

45-70
CGM
Convolutional Generalization Model. 13

CNN

convolutional neural network. 11, 14-16,
30, 34, 35, 38

CTM
chemical transport model. 1,2, 4,5, 8,9

D

DBN
deep belief network. 14, 15

DWD
Deutscher Wetterdienst. 21, 22, 28, 38

E
EEA

European Environmental Agency. 2, 5,
51, 55

G

GBR
gradient boosting regressor. 12, 15, 30,
38, 41-43, 45, 47, 49, 52-55, 58-69
GLMM
generalized linear mixed model. 15
GRF
Gaussian Random Field. 15
GRU
Gated Recurrent Unit. 14

HP
hyper parameter. 5, 20, 31-35, 39-43, 45,
56, 58, 64, 67-69, 71, 73

HPO

hyper parameter optimization. 29, 31,
32, 34, 38, 40, 42, 44, 45, 64, 68
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82 Glossary
LSTM S1
long-short term memory. 13-16, 19, 30, Scenario 1. 35-38, 40, 45, 46, 55-57, 60—
32, 34, 38, 71 68
S2
M Scenario 2. 35, 37-40, 55 58, 63, 65, 68
MAE S3
mean absolute error. 4, 5, 16, 19, 22, Scenario 3. 35, 37, 39, 40, 58-60, 62, 63,
37-39, 42, 45-68 =
65, 68
MF SAE
meteorological fields. 9 stacked auto-encoder. 14
ML SMAC
machine learning. 2, 5-7, 12, 16, 19-21, sequential model-based algorithm config-
9832, 3543, 4555, 58 61, 63-70, 72 aration. 32, 38
MOS

model output statistic. 2-6, 12, 30, 36—
40, 47-50, 53, 54, 57, 5964, 66-71, 73

MSD

mean signed deviation. 38, 39, 48-50,
52-54, 57, 60-64

N
NDVI

normalized difference vegetation index. 9

R
RBM

restricted Boltzmann machine. 14
RF

random forest. 10, 12, 15, 16, 32
RMSE

root mean squared error. 4, 16, 18, 19,
38, 45-47, 66, 69

SVM
support vector machine. 12, 19
SVR

support vector regressor. 16, 30, 38, 42,
43, 49-51, 60, 64, 66, 67, 73

U
UBA
Umweltbundesamt. 21, 22, 28, 38
USA
united states of America. 3, 6
w
WHO
World Health Organization. 1, 2
X
XGB
extreme gradient boosting. 15, 30, 37,
58, 59, 68



