
University of Bremen

Master Thesis

Solving the
Directed Feedback Vertex Set

Problem
in Theory and Practice

Enna Gerhard

November 25, 2024

Supervision and first reviewer
Prof. Dr. Sebastian Siebertz

Second reviewer
Prof. Dr. Sebastian Maneth

Abstract. A directed feedback vertex set (dfvs) is a subset of vertices of a graph, that, when
removed, makes the graph acyclic. The Directed Feedback Vertex Set problem (DFVS) is to find
such a subset. It is NP-complete, hence, we do not know how to solve it efficiently.

In this work we explore practical approaches to find a minimum dfvs on real word instances.
This was also the goal of the Parameterized Algorithms and Computational Experiments (PACE)
challenge 2022. Our submission obtained the second place in the exact track and was the best
student team.

Our first step of finding a minimum dfvs is to apply a set of data reduction rules. These are
applied in polynomial time and reduce the size of the instance. We give a detailed overview of
existing and new data reduction rules.

A kernel can be seen as a collection of reduction rules with theoretical guarantees. It is a poly-
nomial time algorithm that takes a problem instance and returns a smaller equivalent instance
with a bound on its size. We show that a very simple reduction rule removes the input restriction
for the kernel of Bergougnoux et al. (2021). After its application, we obtain an instance with
at most O (f 4) vertices, with f being the size of a minimum feedback vertex set on its cycle
preserving undirected graph.

We implemented several techniques to solve a reduced instance. We achieved best results when
performing an iterative reduction to Hitting Set, which we then either reduce to Integer Linear
Program, Max SAT or Vertex Cover. Solvers for these three problems already exist, which can
solve large instances in practice.

Depending on the instance, we select the best suitable solving approach. For the first time, we
explain the solver that we submitted in detail and present an improved version. We compare
our results with approaches of other challenge participants, in particular DAGer, the winner of
the exact track. Our improved solver is now able to solve the same number of instances within
the time limit of the PACE challenge.

Keywords: Design and analysis of algorithms, Directed Feedback Vertex Set, Graph theory,
Parameterized complexity

Kurzfassung.

Ein Directed Feedback Vertex Set (Dfvs) ist eine Teilmenge der Knoten eines Graphen, sodass
der restliche Graph wenn sie entfernt würde kreisfrei wird. Das Directed Feedback Vertex Set
Problem (DFVS) beschreibt die Suche nach einer solchen Teilmenge. Es ist NP-vollständig, wir
kennen also keinen Weg, es effizient zu lösen.

In dieser Arbeit erkunden wir Ansätze, ein kleinstmögliches Dfvs auf realistischen Probleminstan-
zen finden zu können. Dies war auch das Ziel des Parameterized Algorithms and Computational
Experiments (PACE) Wettbewerbs 2022. In der Kategorie »Exakt« hat unser Wettbewerbsbei-
trag den zweiten Platz erreicht und wir waren das beste Studierendenteam.

Unser erster Schritt, ein Dfvs zu finden, war die Anwendung von verschiedenen Datenreduktion-
sregeln. Diese werden in polynomieller Zeit berechnet und verringern die Größe der Problem-
instanz. Wir stellen bekannte und neue Reduktionsregeln detailliert vor.

Ein Kernel kann als Kombination von Reduktionsregeln verstanden werden. Es ist ein Polyno-
mialzeitalgorithmus der eine kleinere, gleichwertige Instanz mit einer beschränkten Größe er-
rechnet. Wir zeigen, dass eine sehr einfache Reduktionsregel die Eingabebeschränkung des
Kernels von Bergougnoux et al. (2021) überflüssig macht. Nach seiner Anwendung erhalten
wir eine Instanz mit maximalO (f 4) Knoten, wobei f die Größe des kleinstmöglichen Feedback
Vertex Set auf dem zugrundeliegenden ungerichteten Graphen ist, wobei wir parallele Kanten
erhalten.

Wir haben verschiedene Techniken zum Finden der Lösung einer Probleminstanz implemen-
tiert. Unsere besten Ergebnisse haben wir bei einer iterativen Reduktion auf Hitting Set erzielt,
welches wir weiter auf Integer Linear Program, Max SAT oder Vertex Cover reduzieren. Soge-
nannte Solver können die drei genannten Probleme auch auf großen Eingaben aus praktischer
Sicht ziemlich schnell lösen.

Abhängig von der Probleminstanz wählen wir den vielversprechendsten Lösungsansatz. Wir
stellen sowohl den von uns eingereichen Solver erstmals detailliert vor, als auch eine verbesserte
Fassung vor. Zudem vergleichen wir unsere Ergebnisse mit denen von anderenWettbewerbsteil-
nehmenden, vor allem dem erstplatziertenDAGer. Unser verbesserter Solver ist jetzt in der Lage,
die selbe Zahl von Instanzen unter der Zeitbeschränkung des Wettbewerbs zu lösen.

4

5

Contents

1. Introduction 8
1.1. PACE Challenge . 12
1.2. Objective of this thesis . 13
1.3. Structure of this thesis . 14

2. Preliminaries 15
2.1. General graph theoretic notation . 15

2.1.1. Undirected graphs . 16
2.1.2. Structures within graphs . 17
2.1.3. Algorithms . 19

2.2. Complexity Theory . 21
2.3. Important NP-Complete Problems . 23

2.3.1. Directed Feedback Vertex Set . 25
2.3.2. Vertex Cover . 26
2.3.3. Feedback Vertex Set . 27
2.3.4. Hitting Set . 28
2.3.5. Satisfiability . 31
2.3.6. Integer Linear Programs and Linear Programs 33

3. Data Reduction Rules 36
3.1. Formal notation . 38
3.2. Reduction log . 38
3.3. Visual notation . 40
3.4. Structure of rules entries . 40
3.5. Trivial rules . 41
3.6. Existing data reduction rules . 43

3.6.1. No predecessor or successor . 43
3.6.2. Single predecessor or successor . 44
3.6.3. Dominating bi-directed edge . 46
3.6.4. Contract isolated paths of length three 47
3.6.5. Contract neighbors of degree three vertices 49
3.6.6. Crowns . 51
3.6.7. Single disjoint cycle . 53

3.7. Remove edges not on induced cycles . 53
3.7.1. Strongly connected components . 54

6 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

3.7.2. Remove directed dead ends . 57
3.7.3. Remove if there is no directed cycle 58
3.7.4. Remove if there is always a shorter cycle 59
3.7.5. Remove edges while tracking cycles in predecessors 61

3.8. Pick cycle dominating vertices . 64
3.8.1. Pick vertices weakly dominating bi-directed edge 64
3.8.2. Strongly dominating cycle . 65
3.8.3. Weakly dominating cycle . 66

3.9. Other interesting data reduction rules . 67
3.9.1. Too many internally vertex disjoint paths 67
3.9.2. Dominated cliques . 69
3.9.3. Tail-Biting Worms . 69
3.9.4. Tunnels . 70

3.10. Recursive application . 70

4. Kernelisation 72
4.1. Existing kernels for DFVS . 72
4.2. A kernel requiring a Feedback Vertex Set as input 73

4.2.1. Preparing the graph and creating a first bound 73
4.2.2. Bounding vertices of degree zero . 74
4.2.3. Bounding vertices of degree one . 75
4.2.4. Bounding vertices of degree greater than three 77
4.2.5. Bounding the number of paths . 78
4.2.6. Bounding the length of paths . 82
4.2.7. Completing the bound . 83

4.3. New Kernel based on new data reduction rules 84

5. Solving reduced instances 85
5.1. Adding cycles iteratively . 85
5.2. Linear and partial orders . 89
5.3. Hints . 92

5.3.1. Bi-directed edges . 93
5.3.2. Short cycles . 93
5.3.3. Edge on multiple three-cycles . 94
5.3.4. Lower bounds of subgraphs . 95
5.3.5. Cliques . 96

5.4. Combined formulation . 96
5.5. Reduction to Vertex Cover . 99

5.5.1. Replacing cycles with Hitting Set gadgets 99
5.5.2. Optimized gadgets . 99

5.6. Branch and bound . 103
5.6.1. Upper bounds . 104
5.6.2. Lower bounds . 106
5.6.3. Branch and reduce . 107

Contents Contents 7

5.7. Combining the approaches . 109

6. Practical Evaluation 111
6.1. Dataset overview . 111
6.2. Evaluation of reduction rules . 113
6.3. Evaluation of solving techniques . 116
6.4. Comparison with other PACE submissions . 119

6.4.1. DAGer . 121
6.4.2. Mount Doom . 121
6.4.3. G2OAT . 121
6.4.4. DVFS . 122
6.4.5. DiVerSeS . 122

6.5. Creating an improved solver . 122

7. Conclusion 125
7.1. Summary . 125
7.2. Further research on Directed Feedback Vertex Set 127
7.3. Solving other NP-hard problems . 128
7.4. Future practical applications . 129

8. Bibliography 130

A. Appendix 139
A.1. Thanks . 139
A.2. Implementation . 139
A.3. Tables . 139

List of Figures 144

List of Tables 146

List of Algorithms 147

Statutory declaration 148

8

1. Introduction

Suppose we want to develop a new antibiotic drug against a specific type of bacteria.

Instead of developing a specific agent to target the bacterium directly, we could use existing
agents to inhibit reactions that produce its food supply (Tamura et al., 2010). This food is pro-
duced in a series of chemical reactions that turn some molecules into other molecules. Evolution
has made living organisms very robust and there are usually several alternative paths how a
specific molecule is produced within a cell (Deutscher et al., 2006). Overall, these reactions
therefore create a so called metabolic network.

Very simplified, it could look similar to Figure 1.1, with the reactions labeled R1 to R9 and the
exchanged molecules labeledM1 toM9.

A typical feature of metabolic networks are cycles, where the product of a reaction, though
a chain of other reactions is used again as an ingredient (Kun et al., 2008). A well known
example would be the Lactic Acid Cycle that becomes active during intensive physical work.

Let us assume that our existing agents are each able to inhibit a single reaction. However, as
there are several alternative paths how a specific molecule may be produced, we need to inhibit
multiple reactions. This comes with side effects, that are caused elsewhere and outside of our
current scope. To keep them at a minimum, we would search for a smallest combination of
reactions to inhibit.

R1 R2 R3

R4 R5 R6

R7R8 R9

M1

M1

M2

M2

M3M4M4M5

M6 M7

M7

M8 M8

M8

M9

Figure 1.1.: Simplified fictive example of a metabolic network with an optimum solution

1. Introduction 9

For the example in Figure 1.1, we could try to inhibit the reactions R1 and R6 and no cycle
would remain.

Within computer science and especially parallel and distributed programming, we can run into
problems because of concurrency. If two processes would read from the database at the same
time and recompute the value they have just read, the second process might overwrite what the
first process computed. A common technique to address this specific issue would be creating a
lock on the database entries that we want to update first and only after that write the new value.
When an entry is locked by a different process, we would simply wait until the computation of
the other process has completed.

However, two processes might receive a lock on the first entry they want to update and then try
to access the locked entry of the other process. They would now wait for each other, creating
a deadlock. Furthermore, we could end up with much more complex structures of processes
waiting for each other. A solution to recover from this situation would be to select a few processes
that are part of the deadlock and terminate them, for example to recompute them afterwards.

We however only want to terminate as few of these processes as possible. We could try to
analyze the structure of our deadlock to identify one such smallest set of processes (Großmann
et al., 2022).

A possible deadlock situation is depicted in Figure 1.2. We could terminate processes P1, P4,
P5 and P6 such that no deadlock would remain.

The careful reader has observed at this point, that we essentially solved the same problem twice,
even though the two examples came from very different disciplines. If we are able to define our
problem formally, we can try to find a general solution. Having solved the underlying principle,
we can furthermore adapt it to further instances where we encounter the problem again.

P0 P1 P2

P3 P4 P5 P6

P7 P8 P9

wait on each other

waits

waits

waits

waitswaitwaitswaits

waits waits wait wait
wait

waits wait

wait

Figure 1.2.: Processes waiting on each other in a deadlock

10 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

e f g

h i j

d

Figure 1.3.: Example graph with minimum DFVS

The natural concept for formalizing networks, relations and connectivity is that of graphs. A
graph contains “vertices” to represent objects and, between these, “edges” to represent directed
relations between the objects.

The graph in Figure 1.3 is equivalent to the situation within the deadlock from Figure 1.2. How-
ever, we have made it abstract and only kept the information relevant for solving the problem.
This graph could also represent flow within a transportation network or resource and waste dis-
tribution in a circular economy. It could also represent articles of Wikipedia on a specific topic
and how they reference each other or different buildings on a university campus and regular
commutes between them. Or it could represent reactions within a cell as in the first example.

This thesis focuses on the Directed Feedback Vertex Set Problem (DFVS). DFVS is defined on
directed graphs. It can be characterized as identifying a small set of vertices that, when removed,
make the graph acyclic, preventing round walks in the remaining graph when only following the
edges in their own direction. This set of vertices is called the directed feedback vertex set (dfvs).
On the graph in Figure 1.3, the minimum dfvs would consist of vertices b, e, f and g. We will
formally define DFVS in Section 2.3.1.

When we are able to find a minimum dfvs, we are able to find the smallest set of vertices that
can be used to monitor or control internal circulation. We may therefore identify a set of crucial
points within our network. When mapping these back to our real world, these could be the
reactions we want to inhibit from our first example or the processes we need to terminate in our
second example.

These vertices could also represent the inspection points for transportation services, species play-
ing an important role in an ecosystem (Cozzens, 2015) or key processes in a circular economy.
We could also measure how fail-safe a system is and how much of it could be out of order
without it completely breaking down.

1. Introduction 11

a

bb

c

e

f

g

e

f

g

h

i

j

d

Figure 1.4.: Example of using DFVS for graph layouts

DFVS has been used for model checking in program verification (Lichtenstein and Pnueli, 1985),
for very-large-scale integration (VLSI) (Leiserson and Saxe, 1991) and for circuit design, espe-
cially to improve testability using a technique called partial scan that benefits from a small
DFVS (Chakradhar et al., 1994; Dey et al., 1994; Lin and Jou, 2000). There have been further
applications in Bioinformatics such as detecting cancer genes (R. Li et al., 2021).

It is possible to use DFVS for graph layouts, especially with a small dfvs on a fairly large graph.
The remaining vertices form an acyclic graph without any circular dependencies. We can thus
use a hierarchical layout for the remaining vertices and need to handle special cases for the
vertices that are part of a dfvs, for example using labels. This approach is depicted in Figure 1.4
on the example from Figure 1.3, repeating the vertices in the dfvs and placing the others such
that all edges are drawn from left to right.

The power of graphs is that we have a very simple data structure that can be used universally,
and are able to solve problems on them without being tied to a specific domain.

From a theoretical perspective, DFVS is one of the least understood classical NP-complete prob-
lems as defined by Karp (1972). At the same time, it is among the most researched and has
inspired several techniques within parameterized complexity (Lokshtanov, Ramanujan, Saurabh,
et al., 2019).

A common practice for practically solving instances of NP-complete problems is data reduction,
which is a type of preprocessing. We usually perform several data reduction rules that simplify
our problem instance. Afterwards, we can continue with other solving techniques such as branch-
and-bound. The more reduction rules we have applied, the easier this actual solving becomes.

A kernel can be understood as a collection of data reduction rules that allow for a size guarantee
of the remaining instance, depending on some measure. A common measure would be the size
of the solution to the problem itself. We often search for a kernel that produces an instance of
which the number of vertices is within a polynomial factor of the solution to the problem itself.

12 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

In contrast to many other problems, we do not know if such a polynomial kernel exists for DFVS.
This is a major open question within theoretical computer science (Bang-Jensen et al., 2016)
and for example listed first in the list of open problems in (Fomin, Lokshtanov, et al., 2019a).

At the same time, there have not been a lot of previous implementations solving DFVS in practice.
It is therefore an ideal target for further research.

1.1. PACE Challenge

The Parameterized Algorithms and Computational Experiments (PACE) challenge is an inter-
national competition on efficiently solving theoretical problems in practice. In its 2022 iteration,
its main topic was DFVS, aiming to address the aforementioned issues (Großmann et al., 2022).
While its goal was to create solvers, efficient software systems combining several algorithms,
for solving real world DFVS instances, it was also expected to inspire theoretical results.

In the 2022 iteration, there have been two tracks. On the “Exact track”, exact solutions on a
range of instances were computed each with a time limit of half an hour. The “Heuristic track”
required finding solutions as small as possible on larger instances within five minutes.

Parts of the dataset of the PACE challenge that have been used in the heuristic track were
generated using graphs from real world sources such as Social Networks, Purchase Networks
and Wikipedia (Großmann et al., 2022). The other instances were generated artificially. A
large portion was overall fairly sparse, but very dense locally. As such, the problem instances
that our algorithms have been developed against are generally structured in ways that are
realistic for real world applications (Barabási and Albert, 1999).

Parallelism was disallowed, solvers were restricted to a single processor core. It was possible to
compete with almost any modern programming language. The entries had to be open source
and were each accompanied by a solver description. In total, there were 26 different teams
participating in the challenge with participants from 12 countries (Großmann et al., 2022).

We have participated in the PACE challenge as part of a student project (Bergenthal et al.,
2022). We were very successful on the exact track, achieving the second place and completing
as the best student team (Großmann et al., 2022). Among the main reasons for this success
were several data reduction rules that we found and that we have explored and combined
several different solving approaches. Our solver can be found in our public repository1.

However, since the focus of this challenge was on achieving practical improvements, we did not
discuss the details of our solving approach and its theoretical foundations. This can be seen as
the main practical inspiration for this thesis.
1GRAPA, GitLab Department 3, University of Bremen

https://gitlab.informatik.uni-bremen.de/grapa/java/dfvs-solver

https://gitlab.informatik.uni-bremen.de/grapa/java/dfvs-solver

1. Introduction 1.2. Objective of this thesis 13

We continued working on DFVS from a theoretical point of view after the challenge. We were
able to find kernels on several graph classes. One that is directly inspired by our practical work
for the PACE challenge is presented in its own chapter in this thesis. We further obtained more
results on the hardness of the Edge on Induced Cycle problem. The results have been presented
at the SOFSEM conference (Dirks, Gerhard, et al., 2024).

We furthermore analyzed the properties of one data reduction rule that we discovered and were
able to show that it can produce an exact solution to the Edge on Induced Cycle problem, if
we exclude a specific graph as a directed minor. We have presented these results at the SKILL
conference (Dirks and Gerhard, 2024).

1.2. Objective of this thesis

With this thesis, we want to give an overview how the Directed Feedback Vertex Set problem
can be solved in practice. We want to support this both from a theoretical point of view and
evaluate our results experimentally.

1. We aim to collect and analyze data reduction rules that can be computed in poly-
nomial time.
An important result is, that we only need to consider induced cycles. We introduce a new
data reduction rule that heuristically solves the inverse Edge on Induced Cycle problem
on most occasions. Furthermore, we are able to show that this rule allows us to achieve
the kernel of Bergougnoux et al. (2021) without the need to supply a feedback vertex set
of our instance.

2. We implement and evaluate the data reduction rules.
The implementation of these rules can be found in the public repository.

3. We want to explore practical approaches to solve the reduced instances.
This involved a direct reduction from DFVS to Integer Linear Program and an indirect
reduction over Hitting Set to Integer Linear Program, Max SAT and Vertex Cover.

4. We further want to compare our results with those of other participants of the PACE
challenge.
Building upon their discoveries, we will create an improved version of our previous ap-
proach and the solver that we submitted to the PACE challenge.

14 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

1.3. Structure of this thesis

In Chapter 2, we introduce notation and the concepts used in this thesis and provide an overview
of related optimization problems.

Chapter 3 provides an overview of existing, modified and novel data reduction rules. In Sec-
tion 3.7, we have created a new data reduction rule that is both effective in practice and leads
to an improved kernel for DFVS.

Chapter 4 gives an overview on DFVS kernelisation and explains the kernel of Bergougnoux
et al. that we were able to improve – which we explain in Section 4.3.

In Chapter 5, we compare different approaches to practically solving DFVS. We were able to
combine several different solving techniques towards a fairly unusual approach in Section 5.4
that lead to very substantial practical improvements. Another approach that has not been widely
explored previously and was efficient on some instances is a reduction to Vertex Cover in Sec-
tion 5.5.

We evaluate our solving approaches in Chapter 6. In Section 6.5, we explain how we were
able to improve our existing solver.

We conclude in Chapter 7 and give a detailed overview on possible further research.

15

2. Preliminaries

In the following, we will use standard notation from graph theory (for example Bang-Jensen
and Gutin, 2009) and follow the definitions used in Bergougnoux et al. (2021) and Gerhard
(2021) wherever possible. We will repeat most of the notation beyond basic mathematical
notation. Definitions are highlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlightedhighlighted.

2.1. General graph theoretic notation

A (directed) graphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraphgraph G = (V,E) consists of a set of verticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesvertices V (G) = V and a set of edgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedges
E(G) = E ⊆ V (G)2, hence every edge e ∈ E(G) is a pair of vertices e = (u, v) with
u, v ∈ V (G). Unless otherwise noted, graphs are directed as we almost exclusively work on
directed graphs. In the literature, directed graphs are often called digraph. As we defined them
using sets, we will simply ignore adding vertices or edges if they have already been present.

We generally expect our graphs not to contain loopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloopsloops (w,w), as they are removed by our first
reduction rule. When two vertices u, v are connected by edges (u, v) and (v, u), we refer to the
vertices as connected by a bi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edgebi-directed edge {u, v}. We write {u, v} ∈ E(G) if (u, v) , (v, u) ∈
E(G). An edge (u, v) is uni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directeduni-directed if (v, u) /∈ E(G). The number of vertices and edges is
usually denoted as n = |V (G)| and m = |V (E)| respectively. If (u, v) /∈ E(G), we refer to
(u, v) as a non-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edgenon-edge.

Graphs, for exampleG = ({a, b, c, d} , {(a, b) , (a, c) , (b, a) , (b, d) , (c, b) , (c, d)})may be rep-
resented visually, as depicted in Figure 2.1a. Vertices (2.1b) are represented as circles. They
are usually labeled and, in this thesis, generally filled black if they do not have a special mean-

a b

c d

(a) Graph G

a b

c d

(b) Vertices V (G)

a b

a c

b a

b d

c b

c d

(c) Edges E(G)

a b

c

(d) A subgraph H ⊆ G

Figure 2.1.: Basic graph examples
(Adapted from Figure 2.1 in Gerhard, 2021)

16 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

ing. If a vertex has a special meaning or is referenced in the text, it will usually not be filled, like
vertex b in the example. Edges are represented as arrows between two vertices (see 2.1c). In
this example, a and b are connected by a bi-directed edge {a, b}. There are several non-edges
such as (a, d) and (d, a), but also (d, c). We usually omit references to the current graph if it is
clear from the context.

A subgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraph H ⊆ G is a graph that contains a subset of vertices and edges of a graph G with
V (H) ⊆ V (G) and E(H) ⊆ E(G). A subset of vertices V ′ ⊆ V (G) may be used to create
an induced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraphinduced subgraph G[V ′] with the set of vertices V (G[V ′]) = V ′ and edges E(G[V ′]) =
{(u, v) ∈ E(G) | u, v ∈ V ′}, which is the maximal subgraph on these vertices. Figure 2.1d
displays an example where both the vertex d and its incident edges, as well as two other edges
(a, b), (a, c), have been removed from G.

If an edge (u, v) exists, u is a predecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessorpredecessor of v and v a successorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessorsuccessor of u. The predecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessorspredecessors of v,
denoted as →N [v]G = {u | (u, v) ∈ E(G)} are all predecessors of v in G. Analogously, the
successorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessorssuccessors of v areN→ [v]G = {u | (v, u) ∈ E(G)}. We extend these definitions to sets of ver-
ticesW while ignoring possible edges between vertices within these sets. The in-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhoodin-neighborhood
ofW is defined as →N [W]G =

⋃
w∈W

→N [w]G \E(G[W]), the out-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhoodout-neighborhood N→ [W]G
being defined analogously. The in-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degreein-degree of a vertex v is →δ [v]G = |→N [v]G|, its out-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degreeout-degree
is δ→ [v]G = |N→ [v]G|.

ContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContractingContracting two vertices u,w ∈ E(G) into a vertex vuw creates a new graph G′, where u and
w are merged into a single vertex vuw, retaining the neighborhoods of both. We replace the
two vertices with a single new vertex: V (G′) = (V (G) \ {u,w}) ∪ {vuw} and merge their
neighborhoods:

E(G′) = {(s, t) ∈ E(G) | s, t /∈ {u,w}}
∪ {(s, vuw) | s ∈ →N [{u,w}]}
∪ {(vuw, t) | t ∈ N→ [{u,w}]}

We contract (bi-directed) edges by contracting their endpoints.

ShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcuttingShortcutting a vertex v ∈ V (G) is the operation of removing it, V (G′) = V (G) \ {v}, and
connecting all of its predecessors with all of its successors:

E(G′) = {(s, t) ∈ E(G) | s 6= v, t 6= v} ∪ {(s, t) | s ∈ →N [v]G , t ∈ N
→ [v]G}

2.1.1. Undirected graphs

When explicitly specified, graphs may be undirected. They, as well as their related concepts
are defined in the same way as directed graphs with the following exceptions:

• There are only bi-directed edges {u, v}, referred to as edges. We do not draw arrows in
both directions, rather connect them with a single line.

2. Preliminaries 2.1. General graph theoretic notation 17

• Neighborhoods and degrees are defined just once for each vertex, N [v], δ [v].
• We allow parallel edges. We treat them as labeled edges and add a mapping parallel :
E 7→ n ∈ N0 counting the number of parallel edges. We generally ignore this unless
parallel(e) > 1.

Let G be an undirected graph. An undirected graph H is a minorminorminorminorminorminorminorminorminorminorminorminorminorminorminorminorminor of G obtainable from the
subgraph of a second undirected graph G using only a sequence of edge contractions. We
can picture the creation of such a minor as deleting vertices and edges from a graph and then
applying a set of contractions. If a graph H can be obtained by such a procedure from, it has
H as a minor.

2.1.2. Structures within graphs

A pathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpath v1 vl ∈ G of length l is a sequence of distinct vertices (v1, . . . , vl) and connects ver-
tex v1 with vertex vl by l−1 edges e1 = (v1, v2) , e2 = (v2, v3) , . . . , el−1 = (vl−1, vl) ∈ E(G).
In Figure 2.2a, the graph contains a path (a, b, c, d) of length four. We are sometimes only
interested in the existence of a path without paying attention to the length or specific vertices.
We use wavy lines to represent this visually, Figure 2.2b.

A cyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecycle is a v w-path closed by an edge (w, v). A cycle made up of k vertices is referred to as
a k-cycle and has k edges. In Figure 2.2c, the graph contains a 4-cycle (a, b, c, d). In undirected
graphs, cycles may use each bi-directed edge only once. Parallel edges form a two-cycle on
their vertices.

The vertices of a path are denoted as V (v1 vn) = {v1, . . . , vn}. The internal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal verticesinternal vertices of a
path are all vertices except for their end points internal(v1 vn) = V (v1 vn) \ {v1, vn}. A
path is inducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinducedinduced (sometimes called chordless) if and only if the subgraph induced by its vertices
does not contain any edges other than the edges of the path itself. The same applies to induced
cycles. As we do not allow loops, 2-cycles are always induced.

The path p = (a, b, c, d) is induced in Figure 2.2a but not in Figure 2.2d, as there exists a
shortcut from a to d. Neither is p in Figure 2.2e It would not be induced either if an edge in the
other direction existed, for example (d, a), (c, b) or (c, a). The cycle on the vertices (a, b, c, d)
is not induced on the graph in Figure 2.2f, but a, b, d would be.

A complete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graphcomplete graph Kn contains all possible edges between its n ≥ 1 vertices, that is, for any
two distinct vertices u, v ∈ V (Kn), u 6= v : (u, v), (v, u) ∈ E(Kn). A k-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-cliquek-clique is a set of k
vertices that induce a complete graph. Contrarily, a k-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent setk-independent set is a set of k vertices that
induce an edgeless graph. We may omit the k in both cases if the size is not relevant or clear
in its context.

18 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a
b c

d

(a) A path p = (a, b, c, d)

a

p

d

(b) A path p connecting a and d

a

b c

d

(c) A cycle c = (a, b, c, d)

a
b c

d

(d) Path p is not induced

a

p

d

(e) Path p is not induced

a

b c

d

(f) Cycle c is not induced

Figure 2.2.: Path examples

a b

c d
G

(a) A graph

a b

c d
directed(G)

(b) Directed subgraph

a b

c d
undirected(G)

(c) Undirected subgraph
a b

c d
G

(d) Underlying undirected graph

a b

c d
G

(e) Cycle preserving undirected graph

Figure 2.3.: A directed graph, split into its subgraphs and undirected structures

In some cases, only the bi-directed or uni-directed edges of a graph G are relevant. They
form the directed subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraphdirected subgraph directed(G) = {V (G), {(s, t) ∈ E(G) | (t, s) /∈ E(G)}} and
the undirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraphundirected subgraph undirected(G) = {V (G), {{s, t} | (s, t), (t, s) ∈ E(G)}}. Their
union is the original graph. For a directed graph G, the underlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graphunderlying undirected graph is cre-
ated by converting all edges to bi-directed ones, G = (V (G), {{u, v} | (u, v) ∈ E(G)}). The
cycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphcycle preserving undirected graphG of a graphG has the same set of vertices and edges, how-
ever it counts bi-directed edges of the original graph as two parallel edges: parallel({u, v}) =
|{(u, v), (v, u)} ∩ E(G)|. An example is shown in Figure 2.3.

An induced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial orderinduced partial order ≤ over a set A, assigns each element a rankrankrankrankrankrankrankrankrankrankrankrankrankrankrankrankrank. In our case, we usually
create orders for vertices of a graph with A = V (G). An element might share a rank with
another element rank(a) = rank(b) for a 6= b for a, b ∈ A if we do not restrict it with additional
constraints. For any a, b, c ∈ A, the following conditions must hold:

1. If rank(a) ≤ rank(b) and rank(b) ≤ rank(c), then rank(a) ≤ rank(c).

2. Preliminaries 2.1. General graph theoretic notation 19

2. If rank(a) ≤ rank(b) and rank(b) < rank(c), then rank(a) < rank(c).
3. If rank(a) < rank(b) and rank(b) ≤ rank(c), then rank(a) < rank(c).

A graph G is acyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclicacyclic if it does not contain any cycles. For no v, w ∈ V (G), v 6= w both v w
and w v. In the literature, it is sometimes called DAG, short for directed acyclic graph. We
can impose a linear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear orderlinear order, sometimes called topological order, on an acyclic graph, that is a
special case of a partial order, such that:

1. For all pairs of vertices v 6= w rank(v) 6= rank(w).
2. For all edges (s, t) ∈ E(G) the vertices adhere to the order, rank(s) < rank(t).

A strongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected componentstrongly connected component is a maximal subgraph G′ ⊆ G in which all vertices are
pairwise reachable by a path. For each v, w ∈ V (G′), v w and w v. All vertices of an
acyclic graph are their own individual strongly connected components. An s−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cuts−t-cut is a set of
vertices C ⊆ V (G) such that no s t-path in G[V (G) \ C] exists.

Similarly, a forestforestforestforestforestforestforestforestforestforestforestforestforestforestforestforestforest is an undirected graph that does contain any cycle. Vertices of a connectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnectedconnected
componentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponent G′′ ⊆ G are pairwise reachable on an undirected subgraph H ⊆ G. A treetreetreetreetreetreetreetreetreetreetreetreetreetreetreetreetree is a
forest that only contains exactly one connected component.

Finally, a classclassclassclassclassclassclassclassclassclassclassclassclassclassclassclassclass of graphs G with a certain property is a set of graphs, such that each graph
G ∈ G fulfills this property. An example could be planar graphs that, simply put, is the class
of all graphs that can be drawn on the plane without crossing lines. There are also properties
assigning a value to a graph based on a specific measure such as treewidth, where all graphs
that are assigned the same value are in the same graph class. Another common definition of
graph classes are based on excluding a specific graph as a minor or using one of the directed
adaptations of this concept.

2.1.3. Algorithms

We use O-notation to describe the worst case running time of algorithms while hiding constant
factors. For an input size x, its actual function g(x)will be inO (f(x)) if there are fixed constants
c, x0 such that for all x ≥ xo, the value g(x) ≤ c · f(x) (Knuth, 1976). We will mostly use
functions over the number of vertices and edges, n and m of graphs.

Depending on the function f(x) describing the worst case running time in O (f(x)) of an algo-
rithm, we say that it is constantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstant for f(x) = 1, linearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinearlinear for f(x) = x, quadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadraticquadratic for f(x) = x2

and cubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubiccubic for f(x) = x3. If there is a fixed c for f(x) = xc, it is polynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomialpolynomial, for f(x) = cx

it becomes exponential. Although worse dependencies exist, they are generally not relevant
within our context.

There are some basic algorithms that are used and referenced throughout the thesis.

20 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

We can use a breadth first search (BFS) to efficiently find a set of vertices that a vertex v can
reach, Algorithm 2.1. We start with the successors v and iteratively add successors that we
can reach from the reachable vertices to the set of reachable vertices. We can furthermore
modify this search to find a shortest s t-path. For vertex, we track the source from which we
first encountered it and afterwards trace back this shortest path. We write s t = bfs(s, t) for
searching this shortest path. Since we inspect each edge at most once, this is possible inO (m).

Algorithm 2.1: Breadth First Search
Input: Graph G, source vertex s
Output: The set of all vertices reachable from s

1 Q := {s} // Initialize queue with single queued vertex
2 R := ∅ // Track vertices that we have reached
3 while Q is not empty do
4 v := poll(Q) // Select and remove first element in queue
5 for each w ∈ N→ [v] do
6 if w /∈ R then
7 R← R ∪ {w} // Remember not to add w again
8 if w 6= s then
9 Q← Q ∪ {w} // Add w to the queue if it is not s

10 end
11 end
12 end
13 end
14 return R // All vertices we have visited in our search

We can efficiently find minimum s−t-cuts using the method of Ford and Fulkerson (1956) and
its efficient implementation by Dinitz in 1970 (Dinitz, 2006). It applies an iterative search to
augment a set of disjoint paths that have been found. As our graphs are not weighted, we
assume a unit weight, allowing this search to complete in O (

√
n ·m) (S. Even and Tarjan,

1975).

We will subsequently use pseudo-code to specify algorithms in a formal way. We already used
it in Algorithm 2.1 for BFS. It is closely resembling constructs found in programming languages.
Input and output explain which data structures are provided to the algorithm and what it returns,
sometimes also how this output can be interpreted and used. We initially assign values with
:= and reassign values with ←. We generally assume efficient data structures and that basic
operations such as poll on queues are known and use notation otherwise used in the context
of sets. We use // comments to additionally explain the working of the algorithm in natural
language.

2. Preliminaries 2.2. Complexity Theory 21

2.2. Complexity Theory

We already introduced several problems in the introduction informally. Formally, a parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-parame-
terized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problemterized decision problem is a language L ⊆ Σ∗ × N over a fixed, finite alphabet Σ. For an
instance (x, k) ∈ Σ∗×N, the string x may encode some information, in our case often a graph,
while the positive integer k is called the parameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameterparameter (Fomin, Lokshtanov, et al., 2019c). An
algorithm that receives (x, k) and correctly returns true if and only if (x, k) ∈ L decidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecidesdecides L,
solving the decision problem.

In general, we want to solve problems fast and obtain an exact solution on all instances.

Complexity theory studies properties of problems especially linked to the running time and space
in memory required for the execution of algorithms solving it. These are called time complexity
and space complexity. We only consider time complexity in this thesis. For being able to
execute algorithms in practice, there is a major difference between problems that can be solved
in polyomial time and problems requiring exponentially or an even worse number of computation
steps.

The classP contains all problems for which an algorithm deciding it within polynomial time exists.
Problems in NP could be solved within polynomial time if we are able to use non-determinism
within our algorithms, effectively being able to compute several paths in parallel. Obviously
P ⊆ NP, while a major open problem within computer science is determining if P = NP. As a
standard assumption in complexity theory, we assume that P 6= NP.

We can verify a solution to a problem in NP within polynomial time. This is called a certifi-
cate. Since we could perform this verification while trying out all exponentially many possible
certificates, we can solve all problems in NP in exponential time using a brute-force search.

A reductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreductionreduction is an algorithm that takes an instance (x, k) ∈ Σ∗ × N of a problem L ⊆ Σ∗ × N
and returns an instance (x′, k′) of another problem L′ ∈ Σ′ × N such that (x′, k′) ∈ L′ if and
only if (x, k) ∈ L. It reducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreducesreduces L to L′.

We are able to reduce all problems in NP within polynomial time to problems that are NP-hard.
While NP-hard problems may be outside of NP, problems that are both in NP and are NP-
hard are NP-complete. That all these NP-complete problems are essentially equally difficult to
solve was first discovered by Karp in 1972.

DFVS is a classical NP-complete problem as defined by (Karp, 1972). Examples of other
classical NP-complete problems that we will discuss in Section 2.3 are Vertex Cover, Hitting
Set and Satisfiability.

Since DFVS is NP-complete, if we want to obtain a correct solution and use an algorithm to
solve it, we expect to need an exponential number of steps with respect to the input size n+m
in the worst case.

22 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Universal

Exact Fastand

and and

but
restrict instances with new parameters

but
slow/expensive

but only
approximate solution

Figure 2.4.: Conflicting properties of algorithms
(Figure 1.2 from Gerhard, 2021)

We are, however, able to create efficient algorithms if we abandon one of our desired guaran-
tees as depicted in Figure 2.4. If we did not require our solution to be exact, we might produce
a much faster algorithm. We generally call this a heuristic.

If we have a guarantee with respect to the optimal solution size, we call this an approxima-
tion. For example, we could try to create a c-approximation, that is an algorithm that will run
in polynomial time on all instances and will output a result at most c-times as large as the mini-
mum solution. DFVS, however, is Approximable-Hard, so we cannot hope for such a constant
factor approximation (Karp, 1972; Sun, 2024). The best approximation factor we know is
O (log (k) log (log (k))) (G. Even et al., 1998).

However, we can extract a function f(k) of the parameter k to gain a more fine grained view on
computation time. If extracting such a function allows us to create an algorithm with a running
time f(k) · nO(c) for a fixed constant c, the problem is called fixed parameter tractable, FPT.
For all instances of the same parameter size, we are then able to solve the problem within
polynomial time depending otherwise only on the input size n. In our case this would usually
be the solution size k.

DFVS is FPT when parameterized by its solution size k, since the algorithm of Chen et al.
(2008) completes within at most k!·4k·nO(1)+1 steps. We effectively obtain an efficient algorithm
for the class of all graphs with a dfvs of size k. The parameter hides the actual hardness of the
problem, such that f(k) itself has to be exponential at best, since we assume P 6= NP. In our
case using the algorithm by Chen et al., it is even factorial.

An important result within parameterized complexity is that if a problem is FPT, there exists a
kernel (Fomin, Lokshtanov, et al., 2019c, Theorem 1.4). A kernel is an algorithm that takes an
instance of a problem, runs for limited time and returns an instance of the same problem that
has a size with a guarantee dependent on the parameter. Using the approach explained by
Fomin, Lokshtanov, et al., we can execute the algorithm by Chen et al. for k! · 4k ·nO(1)+1 steps.
If it decided the problem, we effectively return its answer using a constant size yes-instace or
no-instance, respectively. Otherwise, we return the instance itself, having ensured that it has a
size smaller than k! · 4k since we would have been able to solve it otherwise.

2. Preliminaries 2.3. Important NP-Complete Problems 23

We are generally more interested in the existence of a polynomial size kernel, since it easily
translate to practical applications. We could first kernelize the instance and after that apply
non-polynomial time techniques directly solving the instance, for example branching algorithms
that improve upon using regular brute-force search.

For DFVS such a polynomial kernel has not been found for general instances, nor has it been
ruled out (Großmann et al., 2022). While making further standard assumptions, there are
problems that are FPT for which no polynomial kernel exists (Bodlaender, Downey, et al.,
2009).

2.3. Important NP-Complete Problems

While the focus of this thesis is on solving DFVS, there are three problems that are closely related:
Vertex Cover, Feedback Vertex Set and Hitting Set.

Furthermore, Satisfiability, its extensions and Integer Linear Program are very problems that
are well suitable for reduction. We will discuss them in further detail since there are well opti-
mized programs, called SAT- and ILPsolvers that can solve them.

All of these problems are usually given as decision problems. For a graph problem, this would
be given an integer k and a graph G, can we find a solution of size k for G?

Most problems also have optimization variants. This view is helpful for many practical applica-
tions in general and the PACE challenge in particular as it was about a minimization problem.
What is a dfvs S on a graph G, such that if it has size k = |S|, there is no dfvs of size k − 1
on G. We will thus state all of the following problems in their optimization variant. For other
problems such as Max SAT, a maximization may be the natural optimization.

They however are closely related. In our case, instead of deciding whether a graph contains a
dfvs of a specific size, we will compute a minimum dfvs that can be found on such an instance. It
is easy to solve the decision problem when being able to solve the optimization problem: Take
the instance, compute a minimum dfvs and accept if and only if the computed solution is at most
as large as the requested size. If, on the other hand we already decided that a graph contains
a dfvs of a specific size, we will be able to find a minimum solution at least as small.

We already give an overview over the reductions that we will explain in the following sections
in Figure 2.5. This figure also includes a selection of reductions that we will not cover but help
to understand the context of practical solving.

24 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

1 Directed Feedback Vertex Set

2 Vertex Cover

Max Clique

4 Hitting Set

7 Max SAT

Independent Set

6 Extended SAT

8 ILP

5 SAT

SMT

9 LP

Quadratic

Non-polynomial

Linear Linear (Section 5.2)

Linear

Linear

Quadratic

LinearLinear

Figure 2.5.: Overview of reductions from DFVS to other problems

2. Preliminaries 2.3. Important NP-Complete Problems 25

2.3.1. Directed Feedback Vertex Set

TheDirected Feedback Vertex SetProblemDFVS, as already informally stated in the introduction,
tries to cover all cycles with vertices S as possible (Fomin, Lokshtanov, et al., 2019b). A valid so-
lution is called a directed feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex setdirected feedback vertex set (dfvs) to distinguish it from the problem. Initially,
it was called Feedback Node Set as one of Karp’s classical NP-complete problems (Prob-
lem 7, 1972). Its optimization variant is sometimes referred to as Minimum Feedback Vertex
Set (MFVS). Sometimes, it is also called Feedback Vertex Set on directed graphs, however we
use DFVS to distinguish it from Feedback Vertex Set, Problem 3, which is defined on undirected
graphs.

Problem 1: Directed Feedback Vertex Set
Notation: S := dfvs(G)
Input: A graph G
Output: A minimum size subset of vertices S ⊆ V (G), such that G[V (G) \ S] does not
contain any cycles.

The decision variant of the problem is clearly in NP. We can show this using a certificate. We
take the input graph G, an existing solution S and then compute G′ = G[V (G) \ S]. Since S
was supposed to be a DFVS, G′ now has to be an acyclic graph. We can now apply Kahn’s
algorithm (Kahn, 1962) onG′ to verify that it is acyclic, Algorithm 2.2. We exhaustively remove
vertices without predecessors or successors. If it indeed did not contain any cycles, no vertex
remains. All of this is possible in quadratic timeO (n ·m) since each vertex is evaluated at most
twice, once having been added initially and then at most once for each of its incoming edges.
In case of the decision problem, we furthermore need to verify that |S| ≤ k which is generally
possible in linear time.

Algorithm 2.2: Verifying that a solution is a DFVS

Input: A graph G, a set of vertices S
Output: Is S a DFVS on G?

1 G′ := G[V (G) \ S]
2 Q := V (G′) // Create a queue from the vertices
3 while Q is not empty do
4 v := poll(Q) // Select and remove a member of Q
5 if →δ [v] = 0 then // If v has no predecessor
6 Q := Q ∪N→ [v] // Add successors of v back to the queue
7 G′ := G′[V (G′) \ v] // Remove v from the graph
8 end
9 end

10 return V (G′) = ∅ // If the graph is empty, S was a DFVS

26 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b

c d
S = {a}

(a) A minimum DFVS

a b

c d
S = {b}

(b) Other minimum DFVS

a b

c d
S = ∅

(c) An acyclic graph

a b

c d
S = {a, b, c}

(d) A complete graph

Figure 2.6.: DFVS examples

During the remainder of this thesis, we generally assume that we are looking for a minimum
DFVS. There can be multiple minimum DFVS of the same size, as with Figures 2.6a and 2.6b.
On an acyclic graph, the minimum DFVS is empty, see 2.6c. On a complete graphKn, the size
of the minimum DFVS is always n−1, three in case of the K4 in 2.6d.

A parameterized algorithm that solves DFVS in O
(
k! · 4k · nO(1)

)
was found by Chen et al.

(2008). Internally, it uses iterative compression. It was further improved by Lokshtanov, Ra-
manujan, and Saurabh (2018) to O

(
k! · 4k · k5 · (n+m)

)
, such that it has a polynomial de-

pendence on the number of vertices n as long as the solution size k remains constant. Recently,
Xiong and Xiao (2024) proposed improvements to its iterative compression to obtain a run-
ning time of O

(
k! · 2o(k) · (n+m)

)
while keeping its size. This is still infeasible for practical

applications, especially with larger solution sizes.

As already explained in Section 2.2, DFVS is FPT (Chen et al., 2008) while a polynomial
kernel dependent only on the solution size has not yet been found.

2.3.2. Vertex Cover

The Vertex Cover problem tries to cover all edges with vertices W (Fomin, Lokshtanov, et al.,
2019b). If W covers all edges of a graph, it is a vertex cover. It is one of the classical NP-
complete problems, initially called Node Cover (Problem 5 of Karp, 1972).

Problem 2: Vertex Cover
Notation: S := vc(G)
Input: An undirected graph G
Output: A minimum size subset of vertices S ⊆ V (G), such that every edge is covered by
at least one vertex that is a member of S: For all {v, w} ∈ E(G) : v ∈ S or w ∈ S

2. Preliminaries 2.3. Important NP-Complete Problems 27

a b c

d e f g

h i j

(a) Undirected graph

a b c

d e f g

h i j

(b) Translated DFVS instance with minimum solution

Figure 2.7.: A reduction from Vertex Cover to DFVS

Solving Vertex Cover efficiently in practice was the objective of the PACE 2019 challenge (Dzul-
fikar et al., 2019). As a result, several efficient solvers exist. The most successful submission for
exact solving is WeGotYouCovered1. It used several branching techniques and a reduction to
Independent Set, a largest set of vertices that are not connected with edges in an undirected
graph, and further to Max Clique, that attempts finding the largest possible clique in an undi-
rected graph (Hespe et al., 2020). The solver they used for Max Clique internally used Max
SAT, Problem 7, incrementally (C. M. Li, Jiang, et al., 2017).

DFVS is a natural directed translation of the Vertex Cover problem to directed graphs. A sim-
ple reduction of Vertex Cover to DFVS is as follows: For every edge {v, w} in an undirected
graph U , create edges (v, w) and (w, v). This will create a cycle between any two vertices that
are adjacent in the undirected graph. Per definition, a DFVS will then need to contain either ver-
tex in order to cover all cycles. Therefore, the vertices contained in a DFVS of such an instance
will also be a valid solution for Vertex Cover. An example can be found in Figure 2.7.

After having removed the vertices of the solution, longer cycles are not possible, since every bi-
directed edge is either covered by a vertex of its source or target. Wewould also be able to show
that this reduction will always produce a minimum solution, this can be proven by contradiction.

A Vertex Cover on the undirected subgraph implies a lower bound for the DFVS on the whole
graph. Since a smaller DFVS would imply the existence of a better Vertex Cover, such a better
solution cannot exist: |dfvs(G)| ≥ |vc(undirected(G))|.

2.3.3. Feedback Vertex Set

A problem on undirected graphs that is defined similar to DFVS is the Feedback Vertex Set
problem (FVS), sometimes called Undirected FVS (UFVS) to distinguish it from DFVS. It is often
attributed to Karp (1972), although only DFVS is directly specified in his paper.

1pace-2019, Karlsruhe Maximum Independent Sets, GitHub
https://github.com/KarlsruheMIS/pace-2019

https://github.com/KarlsruheMIS/pace-2019

28 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

d e f g

h i j

(a) Regular undirected graph

a b c

d e f g

h i j

(b) Undirected graph with parallel edges

Figure 2.8.: Examples of a minimum Feedback Vertex Set

Although it is similar defined as DFVS, it is completely different in its nature. For this problem, we
want to remove vertices of an undirected graph, such that no undirected cycles remain (Fomin,
Lokshtanov, et al., 2019b), creating a forest.

Problem 3: Feedback Vertex Set
Notation: S := fvs(G)
Input: An undirected graph G
Output: A minimum size subset of vertices S ⊆ V (G), such that G[V (G) \ S] does not
contain any cycles.

It is not trivial to reduce that problem to DFVS in polynomial time or vice-versa, as translating the
undirected cycles to directed ones would create unwanted or unexpected paths that would also
need to be accounted for and in the other direction, important directional information would be
lost.

However, a Feedback Vertex Set solution on the cycle preserving undirected graph is immedi-
ately a valid, though not necessarily minimum dfvs, therefore

∣∣∣fvs
(
G
)∣∣∣ ≥ |dfvs(G)|.

In Figure 2.8a, we give a minimum feedback vertex set for the undirected graph from Fig-
ure 2.7a. In contrast to a minimum Vertex Cover, this does not need to cover all edges. In
Figure 2.8b, we show a minimum feedback vertex set on an undirected graph containing par-
allel edges. It is the cycle preserving undirected graph of the graph in Figure 1.3 on page 10
and in this case has the same size as a minimum DFVS on that graph.

2.3.4. Hitting Set

The Hitting Set problem is traditionally not defined on graphs. Instead, it is defined using
a system of partially intersecting sets. These could also be represented with hypergraphs, i.e.
undirected graphs containing edges with not exactly two endpoints. It is a classicalNP-complete
problem (Problem 15 of Karp, 1972).

2. Preliminaries 2.3. Important NP-Complete Problems 29

a b c

d e f

g h i

(a) Undirected graph

a b c

d e f

g h i

(b) Equivalent Hitting Set instance

Figure 2.9.: A reduction from Vertex Cover to Hitting Set

Given a system of sets containing shared elements, we try to find a minimum set of vertices S
such that each of the sets shares at least one member with S (Fomin, Lokshtanov, et al., 2019b).

Problem 4: Hitting Set
Notation: S := hs(U,A)
Input: Universe U , a family of sets A, such that ∀A ∈ A : A ⊆ U
Output: A minimum size subset of elements S ⊆ U , such that its intersections with all sets
A ∈ A is not empty.

We will use the Hitting Set problem primarily as an intermediate step during reductions. It
has a wide range of equivalent and related problems. Reducing it to other efficiently solvable
problems is very simple (Ausiello et al., 1980).

A reduction from Vertex Cover to Hitting Set is straightforward. Create an element for every
vertex. For every edge, add a set containing both of its endpoints. The Hitting Set solution
is exactly a Vertex Cover on the respective graph. We omit the proof since it is obvious. An
example for such a reduction is given in Figure 2.9.

We are able to extend the idea behind this simple reduction to a reduction from DFVS to Hitting
Set. We represent the vertices of our graph as set elements. We then create a set for every
cycle in the graph, containing all of its vertices. There may be exponentially many cycles (and
there typically are), this reduction is therefore not polynomial. The Hitting Set is immediately a
minimum DFVS.

Proof Suppose towards a contradiction that the returned DFVS S was not minimum. Then a
smaller solution S ′ would exist. For every cycle, a vertex in S ′ exists. Since the Hitting Set
contains sets directly corresponding to all cycles, every set contains a vertex from S ′. In this
case, S ′ would also be a smaller solution to the Hitting Set instance. This is a contradiction
since S was already minimum. Therefore, we have also demonstrated that the returned DFVS is
actually minimum. �

30 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b

c d

(a) Original DFVS instance

a b

c

(b) First cycle

a b

(c) Second cycle

a b

c

(d) Reduced to Hitting Set

a b

c

(e) First set

a b

(f) Second set

va vb

vc

c1a c1b

c1c

c2a c2b

C1

C2

(g) Reduced to Vertex Cover

va vb

vc

c1a c1b

c1c C1

(h) First gadget

va vb

c2a c2b C2

(i) Second gadget

Figure 2.10.: Reduction from DFVS to Hitting Set to Vertex Cover

An example is shown in Figure 2.10. For all cycles (2.10b, 2.10c), we create sets (2.10e,
2.10f). The union of these sets is then the Hitting Set instance, 2.10d.

We are able to provide a further reduction from Hitting Set to Vertex Cover that is quadratic
in size.

Given a set system A over our universe U we create a graph containing vertices Vinitial. Each
element u ∈ U is associated with a different vertex vu ∈ Vinitial. For each set A ∈ A, we add
a clique CA of the size of A. We then connect the vertex va of each set element a ∈ A with a
different member of the new clique cAa ∈ CA using an edge

{
va, c

A
a

}
.

For the resulting graph we can compute a minimum Vertex Cover S. We can translate the
solution back to a Hitting Set solution. We can immediately add all set elements associated
with vertices in the solution S ∩ Vinitial. In case the Vertex Cover selected all vertices of one
of the created cliques, we need to push one of these out into our solution, taking any of the
vertices of the original set. Therefore, we need to keep track of the cliques. This reduction finds
a minimum solution for the Hitting Set instance.

2. Preliminaries 2.3. Important NP-Complete Problems 31

We continue the example in Figure 2.10. We create gadgets (2.10h, 2.10i) representing the
previous sets (2.10e, 2.10f). Together, these create a graph, 2.10g, of which the minimum
Vertex Cover can be translated back to the Hitting Set solution, which in turn is directly a
solution for DFVS.

2.3.5. Satisfiability

A formula of propositional logic in Conjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal FormConjunctive Normal Form (CNF) ϕ is a conjunction ϕ =∧
C∈C C of clausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclausesclauses C ∈ ϕ, which are disjunctions C =

∨
l∈L l of literalsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliterals L ∈ C , which are

boolean variables l = x, or their negation l = ¬x with x ∈ X (Prestwich, 2021). An
assignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignmentassignment ψ for variables X assigns each variable x ∈ X either to true or false, x ∈ ψ or
¬x ∈ ψ. An assignment ψ satisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfiessatisfies a literal if either v ∈ ψ and l = v or ¬v ∈ ψ and l = ¬v.
Similarly a clause C is satisfied if there is a literal l ∈ C that is satisfied and a CNF ϕ is satisfied
if all clauses C ∈ ϕ are satisfied.

The Satisfiability problem (SAT) is to determine if a logic formula can be satisfied. In our case,
we assume that it is already given in CNF, sometimes this problem is then called CNF-SAT
(Fomin, Lokshtanov, et al., 2019b). It is usually given in its decision variant:

Problem 5: Satisfiability
Input: Variables X , a CNF formula ϕ over literals from X
Output: Is there an assignment ψ that satisfies ϕ.

There are solvers capable of solving SAT very fast in practice, as it is an ideal target for reductions
of several other problems with direct practical applications. Modern solvers use Conflict-Driven
Clause Learning (CDCL) to iteratively discover new constraints for the problem. This makes
iteratively adding constraints feasible, as already discovered constraints can be kept in such
cases. Among the best performing and best documented solvers is CaDiCal which is using a
CDCL based approach (Biere, Fazekas, et al., 2020).

While SAT as a problem is already very flexible, it does not help with our specific use case. We
define Extended SAT with the following differences:

1. We also allow integer variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variablesinteger variables y ∈ Y . ψ assigns them an integer value y ∈ [a, b]
between and including a ≥ 1 and b ≤ n. They will be used in Section 5.2 on page 89.

2. We introduce smaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller thansmaller than literals (y1 < y2) that compare two integer variables y1 and
y2 and can be used in place of one literal per clause. They are satisfied by ψ if y1 is
assigned a smaller value than y2. As a result, they are transitive.

3. The sizesizesizesizesizesizesizesizesizesizesizesizesizesizesizesizesize of an assignment ψ is its count of boolean variables assigned true,
|{x ∈ X | x ∈ ψ}|. We try to find a minimum size assignment.

4. For simplicity, we expect ϕ to be satisfiable.

32 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Problem 6: Extended SAT
Input: Variables X , integer variables Y , a satisfiable CNF formula ϕ over literals from X
and smaller than literals over Y and a size n such that |X| = n = |Y |.
Output: An minimum size assignment ψ that satisfies all clauses of ϕ

We can easily reduce Hitting Set to Extended SAT without even needing integer variables. We
represent each element a ∈ U using a boolean variable xa, For every set in A, we create a
clause requiring any represented element to be selected, ψ =

∧
A∈A

∨
a∈A xa. Using Hitting

Set as an intermediate step during reduction, we can easily reduce from Vertex Cover and
DFVS as well.

The DFVS instance from Figure 2.10d would be reduced to:

(a ∨ b) ∧ (a ∨ b ∨ c)

Minimum satisfying assignments would be ψ = {a} or ψ = {b}.

Our Extended SAT can be seen as a subset of the even more powerful Satisfiability Modulo
Theories (SMT). We will not explain them in detail, but it is a long studied field of research
and there are SMT solvers specifically optimized for similar use cases. They could for example
encode integers with bit vectors and internally call existing SAT solvers (Barrett et al., 2021).

We attempted using Z32. Although it was generally faster than ILP solvers explained in the next
section, we decided against using it after it returned non-minimum solutions.

A more traditional optimization variant of Satisfiability that was successfully used by other
PACE challenge participants is Max SAT, sometimes called Maximum Satisfiability. Given a
logic formula in CNF that is generally not satisfiable, we try to find an assignment that satisfies
as many clauses as possible (Fomin, Lokshtanov, et al., 2019b; C. M. Li and Manyà, 2021).

Problem 7: Max SAT
Input: Variables X , a CNF formula ϕ over literals from X
Output: An assignment ψ that satisfies as many clauses of ϕ as possible.

We can reduce Hitting Set to Max SAT in the same way we reduced it to Extended SAT above.
However, a solution satisfying as many clauses of ϕwould assign all variables as true. To obtain
a minimum solution, we add clauses containing each of our variables in negated form. The less
variables we assign as true, the more clauses can be satisfied. However, now our solution may
not satisfy one of our original clauses and instead assign several variables as false. We can
prevent this by adding our original clauses a total of n + 1 times. Being able to satisfy such a
clause now outweighs assigning a variable as false for our solution.

2Z3 Theorem Prover, z3, GitHub https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3

2. Preliminaries 2.3. Important NP-Complete Problems 33

The example from Figure 2.10d would be reduced to:

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b) ∧ (a ∨ b)
∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)
∧
(
a
)
∧
(
b
)
∧
(
c
)
∧
(
d
)

We could reduce our Extended SAT to Max SAT using a similar approach. We however would
need to ensure transitivity of smaller than literals which would create a quadratic number of
additional constraints.

Several solvers performing well on a diverse set of instances exist, fostered by an annual chal-
lenge on solving it (Berg et al., 2024). Among the best current solvers is EvalMaxSat3. This
solver performs a series of reductions to SAT (Avellaneda, 2020) following the approach of
Morgado et al. (2014) and in turn uses a highly optimized solver internally.

Furthermore, they are already optimized for the operation we performed. They differentiate
between hard and soft constraints, hard constraints needing to be fulfilled and optimizing the
solution within the soft constraints.

2.3.6. Integer Linear Programs and Linear Programs

An Integer Linear Program (ILP) tries to find an assignment of integer values that optimizes
an objective function given as a linear combination of variables while adhering to a set of
constraints imposing bounds on linear combinations of their variables and only using integer
values (Chong and Żak, 2008).

Its canonical form is to find a maximum solution for an objective function subject to constraints
imposing an upper bound for the sum of the linear combination. In our context, we consider
the dual problem. We try to find a solution that gives us a minimum on our objective function
subject to a set of lower bounds. This variant could directly be translated into the canonical
form (Vanderbei, 2020).

Problem 8: Integer Linear Program
Input: Variables X , an objective function f , a set of lower bound constraints C .
Output: Integer assignments S for X satisfying all constraints C with f(s) being minimum.

We can generally expect ILP solvers to be optimized for our use case since since our instance
can immediately be converted to its dual problem and takes on the standard form.

3EvalMaxSAT, Florent Avellaneda, GitHub https://github.com/FlorentAvellaneda/EvalMaxSAT

https://github.com/FlorentAvellaneda/EvalMaxSAT

34 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

We can reduce Extended SAT to ILP, since we required all its integer variables to contain values
in a limited range. We represent boolean variables as 0 for false and 1 for true and directly
reuse integer variables, keeping their bounds. For every clause C , we create a constraint with
a lower bound of one. We represent a smaller than literal (ya < yb) ∈ C as yb− ya. This value
will be in the range [1, n] if yb > ya and between [−n,−1] otherwise. Since there can be at
most one smaller than literal in a clause, we can multiply the ILP variables representing Extended
SAT boolean variables with n+ 1 and use the sum over the value of all represented literals.

Since we require this sum to be at least 1, our constraint is exactly fulfilled if the clause is satisfied.
Any negative value occurring because of the smaller than literal not being fulfilled is outweighed
if a 1 representing a boolean variable true is multiplied with n+ 1. We obtain a positive value
for a constraint if the integer variable is smaller as requested or any boolean variable is fulfilled.

The ILP for our example from Figure 2.10d would be:

Minimize

a+ b+ c+ d

such that

a+ b ≥ 1

a+ b+ c ≥ 1

Mixed Integer Program (MIP), sometimes Mixed Integer Linear Program (MILP) is a superset
of ILP that allows some variables to be assigned fractional values. We did not rely on these,
however we used a MIP solver, SCIP4 for solving ILP.

When completely removing the integrality requirement for constraints from an ILP, we refer to it
as a Linear Program (LP) (Chong and Żak, 2008).

Problem 9: Linear Program
Input: Variables X , an objective function f , a set of lower bound constraints C .
Output: Real number assignments S for X satisfying all constraints C with f(s) being
minimum.

In contrast to ILP, solving LP is possible in polynomial time when we limit the size, for example
represented as bits, used to represent numbers handled, in effect determining the accuracy. We
can solve it efficiently, for example using the simplex method, initially developed by Dantzig
in 1963. While it has an exponential worst case running time, its average running time is
comparable to later developed techniques that offer polynomial time guarantees (Chong and
Żak, 2008; Vanderbei, 2020).
4SCIP Optimization Suite, Zuse Institute Berlin https://www.scipopt.org/

https://www.scipopt.org/

2. Preliminaries 2.3. Important NP-Complete Problems 35

As a result, there are efficient Linear Program solvers. We used GLOP5. Solving ILPs often
relies on iteratively adding further constraints to an internal LP formulation (Achterberg et al.,
2008).

5Google’s Linear Optimization Package, OR-Tools - Google Optimization Tools, Google, GitHub
https://github.com/google/or-tools/tree/stable/ortools/glop

https://github.com/google/or-tools/tree/stable/ortools/glop

36

3. Data Reduction Rules

A data reduction rule, often simply called reduction rule, is a simple and efficiently computable
algorithm. Given the instance of a problem, it returns an equivalent instance of the same prob-
lem that is typically smaller or in other ways more suitable for further solving. A kernel (see
Section 2.2) can also be seen as a collection of reduction rules that imply a guarantee on the
size of the obtained instance when applied exhaustively.

Data reduction has successfully been used as a preprocessing step in practically solving a variety
of problems, such as Vertex Cover (Hespe et al., 2020), SAT (Biere, Järvisalo, et al., 2021)
or MIP (Savelsbergh, 1994). It furthermore inspired several kernels, for example for Vertex
Cover (Fellows, Jaffke, et al., 2018), but also for DFVS (Bergougnoux et al., 2021).

In this chapter, we collect existing reduction rules for DFVS and discuss new reduction rules that
we created and implemented. We present overview in Table 3.1. It also includes reduction
rules from the following chapter.

In the example in Figure 3.1, we immediately know that d does not lie on a cycle we would
need to cover since, therefore we can remove it (3.1f). Instead of choosing c which can only
cover cycles using exactly the edges (a, c) and (c, b), we can shortcut c, 3.1g, which would
only create the already existing edge (b, a). The same would apply both for a and b now. We
decide to shortcut b, 3.1h. The now created loop as a 1-cycle definitely needs to be added to
the solution, 3.1i. In this case, our instance was solved only using reduction rules.

a b

c d

(a) Initial graph

a b

c

(b) Equivalent

a b

(c) Equivalent

a

(d) Equivalent

a

(e) Solution

Delete d
(f) Reduction rule 4

Shortcut c
(g) Reduction rule 5

Shortcut b
(h) Reduction rule 5

Directly add loop
(i) Reduction rule 1

Figure 3.1.: Applying reduction rules to a DFVS instance and solving it

3. Data Reduction Rules 37

Table 3.1.: Overview of reduction rules
Rule Match. New n Newm New k Impl.

1 Shortcut loops O (n) n−1 ≤ m−1 k (X)
2 Adjacent to k+1 other verticesk O (m) n−1 ≤ m−2k k−1 ×
3 Adjacent to all other vertices O (n) n−1 m−2n+2 k−1 X

4 No predecessor or successor O (n) n−1 ≤ m k X
5 Single predecessor or successor† O (n) n−1 ≤ m−1 k X
6 Dominating bi-directed edge O (m2) n−1 ≤ m−2 k−1 X
7 Remove lines O (n) n−1 ≤ m−4 k−1 X
8 Remove triangles O (n) n−1 ≤ 2m−8 k−1 X
9 Remove three independent O (n) n−1 ≤ 2m−2 k
10 Crowns O (n) < n < m < k X

11 Strongly connected components†† O (n2) n††† ≤ m††† k††† X
12 Directed dead ends O (n2) n ≤ m−1 k X
13 No directed cycle O (m2) n m−1 k (X)
14 Remove ignoring shorter cycle O (m2) n m−1 k (X)
15 Shorter cycle in predecessors O (m · n2) n m−1 k X

16 Weakly dominating 2-cycle O (m2) n−1 ≤ m−2 k−1 X
17 Strongly dominating cycle O (m · n2) n−1 ≤ m−2 k−1
18 Weakly dominating cycle O (m · n2) n−1 ≤ m−2 k−1 ×

19 More than k+1 disjoint pathsk† O (n2m ·
√
n) n m+1 k ×

20 Floating vertex O (n3) n−1 ≤ m k (X)
21 Covered directed neighborhoods O (n3) n ≤ m k (X)
22 Covered pathsf O (nn) ≤ n ≤ m k (X)
23 Non-contributing edge O (n3) n m−1 k (X)

X Implemented (X) … implicitly … but unused × Not implemented
k Requires a known upper bound for k.
f This rule becomes polynomial if the underlying Feedback Vertex Set is known
† May create loops, decreasing n,m and k when applying Reduction rule 1 immediately.
†† Only a single application, resulting components can be solved individually.
††† Distributed across up to four created sub-instances.

38 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

We will state the reduction rules used in the kernel by Bergougnoux et al. (2021) in Section 4.2
on page 73 as they are mostly interesting in that context. We there follow the format that is
used in this chapter.

3.1. Formal notation

A data reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction ruledata reduction rule is an algorithm that takes a problem instanceG as an input and produces
another instance G′ of the same problem, called reduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instancereduced instance. It also provides instructions
on how to obtain a solution for the original problem once the reduced instance has been solved.
For a reduction rule to be safesafesafesafesafesafesafesafesafesafesafesafesafesafesafesafesafe, this solution needs to be valid and of the same (minimum) size.
In our case, problem instances are always graphs.

Usually, reduction rules will attempt to either reduce the number of vertices n of the graph or
the number of edges m. They may also reduce the solution size k, such that the set of vertices
in the solution of the reduced instance is smaller than that of the original one. We typically
perform these operations directly on the current graph as creating copies would produce a
large overhead.

Generally, when providing the computational complexity of rules, we will only consider the
matching that the rule performs. The rewriting can usually affect the whole graph, for example
if a vertex is removed by the rule, we will need to update up to n−1 other vertices that a vertex
had been connected to, if we assume a data structure that tracks degrees of vertices. As a
result, the application of a rule as a whole usually requires up toO (n2) additional steps, which
are often hidden by higher exponents required for matching. On sparse graphs, this becomes
negligible, especially if we bound the maximum degree of vertices.

We assume an adjacency list based graph implementation. With an efficient set implementation,
this allows for constant time testing for the presence of specific edges. We furthermore assume
that basic counting, for example →δ [v] , δ→ [v] is available in constant time.

3.2. Reduction log

Several rules do not merely return a smaller equivalent instance but rather allow us to add
vertices directly to the solution. In some cases, this depends on how the remaining instance was
solved.

3. Data Reduction Rules 3.2. Reduction log 39

a
b

c
d

e

c
d

e
Log entry 1

c ∈ S ⇒ b ∈ S
c /∈ S ⇒ a ∈ S

d
Log entry 1

d ∈ S ⇒ e ∈ S
d /∈ S ⇒ c ∈ S

Log entry 2
c ∈ S ⇒ b ∈ S
c /∈ S ⇒ a ∈ S

(a) Initial graph (b) Applied Reduction rule 7 on a (c) Applied Rule 7 on c

S = ∅
Log entry 1

d ∈ S ⇒ e ∈ S
d /∈ S ⇒ c ∈ S

Log entry 2
c ∈ S ⇒ b ∈ S
c /∈ S ⇒ a ∈ S

S = {c}
Log entry 1

c ∈ S ⇒ b ∈ S
c /∈ S ⇒ a ∈ S

S = {b, c}

(d) Solved instance manually (e) Second log entry applied (f) First log entry applied

Figure 3.2.: A log of changes to be applied after solving and reconstructing the solution

We rely on a log of instructions that will be applied backwards after the instance is solved. If
a vertex v is added to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solutionadded to the solution, we create a single log entry that will add it to a solution S ′

of the reduced instance, S := S ′ ∪ {v}. For the reduced instance, we delete v and all edges
that it was part of. Log entries can also be conditional depending on other vertices appearing
in the solution of the reduced instance.

An example is shown in Figure 3.2. We apply Reduction rule 7 twice, each time creating a
smaller instance and a log entry how the result should be interpreted afterwards (3.2b, 3.2c).
After having solved the instance (3.2d), we apply the log in reverse order (3.2e, 3.2f). We
always only consider the innermost pair of instance and log entry.

40 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

3.3. Visual notation

For many rules that are applied locally, we can separate the algorithm into two phases. During
matchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatchingmatching, we try to find a specific subgraph that this reduction rule can be applied to. In the
rewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewritingrewriting phase, the graph is altered, vertices and edges may be added or removed.

These rules are illustrated similar to graph grammars or transformation units (Kreowski, Klempien-
Hinrichs, et al., 2006; Kreowski, Kuske, et al., 2008).

They have a left hand that visualizes the state of a subgraph before the rule is applied and a
right hand side that depicts the state after the rule is applied. With our visualization, we add
labels to each vertex. If a label appears on both sides, it refers to the same vertex in the graph.
If a label only appears on one side, it refers to a vertex being removed or added, respectively.

We may indicate that there are multiple vertices a vertex is connected with by using dots. This
would not be possible with graph grammars, thoughwe could usually define constructs of several
rules that would achieve a similar behaviour. If a vertex is marked, we require it to be otherwise
isolated, i.e. that all vertices it is connected with are the ones displayed. This would also require
considerable amounts of work with regular graph grammars.

Usually, we allow different vertices on the right hand site of a rule to be matched on a single
vertex in the actual graph. This is most common if a vertex would be both successor and prede-
cessor of a single vertex or a vertex would be connected to two vertices that are in the focus of
a rule.

Furthermore, there is a section containing the instructions on how to obtain the solution. Usually,
we are able to compute the solution of the derived instance and add any vertices that are listed
in this section. This section may also contain more complex instructions on how to obtain the
solution of the original instance. These would be applied as described in Section 3.2.

3.4. Structure of rules entries

The reduction rules in this chapter are always stated and explained in the same schema.

• Rule
We start with a short description of the rule.

• Visual notation
We use the visual notation from Section 3.3. In some cases, we use several rules for
different variants.

3. Data Reduction Rules 3.5. Trivial rules 41

• Algorithm
If using the visual notation is infeasible, we rely on an algorithm that explains the matching
for the rule.

• Proof of safeness
Proof that the reduction rule is safe.

• Overview
Table summarizing changes to k, n,m on a single successful application and the overall
running time in O-notation.

• Implementation
A note where the implementation of the rule can be found.

We omit parts of it depending on context. We may furthermore give examples, comment on the
origin of the rule or add other helpful information.

3.5. Trivial rules

The following rules are trivial and can be considered as folklore, we start with loops (Rule LOOP
of Levy and Low, 1988, Lin and Jou, 2000, Swat, 2022b; Rule 1 of R. Fleischer et al., 2009).

Reduction rule 1: Remove loops

If a vertex v is part of a loop, we can safely add it to the solution.
Visual notation: Remove loops

v
ø Solution

v

Proof of safeness

The loop is a cycle that needs to be covered. Any cycles going through the vertex that is
adjacent to it will be covered by v so it is safe to delete it afterwards. �

Overview

New n n−1 The vertex v gets removed.
New m ≤ m−1 The loop (v, v) and any adjacent vertices are removed.
New k k−1 The vertex v is added to to the solution.

Matching time O (n) We can test for an edge (v, v) in constant time.

Implementation

Implicitly in other reduction rules.

42 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

The datasets are guaranteed not to contain loops. In the implementation, will immediately add
vertices to S instead of allowing a loop to be created. This rule is therefore only applied implicitly
within the other rules.

If we know an upper bound for k on our graphG, we can apply the following easily computable
special case of Reduction rule 19 by Bergougnoux et al. (Rule 3, 2021). We explain upper
bounds for DFVS in Section 5.6.1.

Reduction rule 2: Adjacent to more than k vertices

If we know a maximum solution size k and a vertex v has at least k + 1 bi-directed edges,
we can safely add v to the solution and delete it for the reduced instance.
Visual notation: Adjacent to more than k vertices

1

2

k+1

···v

1

2

k+1

···

Solution
v

Proof of safeness

For all bi-directed edges, either vertex must be added to the solution. Suppose all other
vertices were part of the solution. In that case, the solution would contain at least k + 1
vertices, a contradiction to our original claim. A solution is therefore only possible when
including v. �

Overview

New n n−1 Vertex v is added to the solution.

New m ≤ m−2k The adjacent k bi-directed edges and possible further edges
connected to v are removed.

New k k − 1 We include v in the solution.

Matching time O (m)
For each vertex, we compute the cut of predecessors and
successors. For this, we need to handle every edge at most
twice.

Implementation

Not implemented

Although the matching is similar to Reduction rule 2, the following rule can be seen as a spe-
cial and easily computable case of Reduction rule 6. Its matching can be implemented very
efficiently. In practice, instead of searching through all vertices, we can take an arbitrary vertex
and inspect its neighbors, since such a vertex needs to be adjacent to every vertex.

3. Data Reduction Rules 3.6. Existing data reduction rules 43

Reduction rule 3: Adjacent to all other vertices

If a vertex v lies on n−1 undirected edges, with →δ [v] = n − 1 and δ→ [v] = n − 1, we
can safely add v to the solution.
Visual notation: Adjacent to all other vertices

1

2

n-1

···v

1

2

n-1

···

Solution
v

Proof of safeness

For all bi-directed edges, either vertex must be added to the solution. Suppose all other
vertices were part of the solution. In that case, we could create a solution of equivalent size
by removing any of the other vertices from the solution and including v. �

Overview

New n n−1 Vertex v is added to the solution.
New m m−2n+2 The adjacent n bi-directed edges are removed.
New k k − 1 We include v in the solution.

Matching time O (n)
For each vertex, we can immediately count the number of
predecessors and successors.

Implementation

In ReduceKBased

3.6. Existing data reduction rules

We give an overview of the most important data reduction rules as found in the literature. Most
of these were also implemented and used in our solver.

3.6.1. No predecessor or successor

This rule is commonly known (Rules IN0 and OUT0 of Levy and Low, 1988, Lin and Jou, 2000,
Swat, 2022b; Rule 3 of R. Fleischer et al., 2009; Rule 1 of Bergougnoux et al., 2021). When
applied recursively, see Section 3.10, it effectively becomes Kahn’s Algorithm (1962).

44 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 4: No predecessor or successor

If a vertex v has no predecessors or successors, resulting in an in- or out-degree of zero, we
can remove v and any adjacent edges from the graph without affecting the solution.
Visual notation: No predecessors

1

2

i

···v

1

2

i

···

Solution
ø

Visual notation: No successors

1

2

i

··· v

1

2

i

···

Solution
ø

Proof of safeness

The vertex v does not lie on a cycle. Suppose it was included in a minimum DFVS. In that
case, we would be able to find another valid solution while not including this vertex as
removing this vertex from the DFVS would not result in a cycle not being covered. �

Overview

New n n−1 The vertex itself is removed.
New m ≤ m Any remaining edges connected to the vertex are removed.
New k k No vertices are added to the solution.

Matching time O (n)
We can test the degree of each vertex in constant time. If applied
successfully, we need to remove up to n−1 adjacent edges dur-
ing each attempt, thus resulting in a total complexity of O (n2).

Implementation

As part of CombinedRecursiveReduction, see Section 3.10.

3.6.2. Single predecessor or successor

This rule is also commonly known (Rules IN1 and OUT1 of Levy and Low, 1988, Lin and Jou,
2000, Swat, 2022b; Rule 4 of R. Fleischer et al., 2009; Rule 2 of Bergougnoux et al., 2021).

3. Data Reduction Rules 3.6. Existing data reduction rules 45

Reduction rule 5: Single predecessor or successor

If a vertex v has a single predecessor or successor u, we can shortcut v. As a special case
to handle Reduction rule 1, if the single edge leads to a vertex w that is also connected in
the opposite direction, we add w immediately to the solution instead of creating a loop.
Visual notation: Single predecessor

1

2

i

···vu

1

2

i

···u
Solution

ø

Visual notation: Single successor

1

2

i

··· v u

1

2

i

··· u
Solution

ø

Proof of safeness

All cycles that involve v contain the edge (u, v) or (v, u), respectively.
This does not increase the solution size and still produces a valid solution. Assume that v
was included in the solution. In this case, selecting u would lead to a solution of the same
size and would cover all cycles through (u, v).
This rule also does not decrease the solution size. For any existing v u-path that was closed
to a cycle with the edge (u, v), there is now an equivalent u u-path, since all successors
of v are now successors of u. The reverse direction is analog. �

Overview

New n n−1 The vertex v gets removed.

New m ≤ m−1
The edge (u, v) is removed. If u shared successors or prede-
cessors, respectively, with v, these are “merged”, decreasing
the number of edges

New k k
No vertices can be added to the solution unless the rule ap-
plication creates a loop, in this case it would become k−1
because of immediately applying Reduction rule 1.

Matching time O (n)

We can test the degree of each vertex in constant time. If
applied successfully, we need to remove up to n− 1 adjacent
edges during each attempt, thus resulting in a total complexity
of O (n2)

46 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 5: Single predecessor or successor (continued)
Implementation

As part of CombinedRecursiveReduction, see Section 3.10.

After having applied this rule and Reduction rule 4 exhaustively, all remaining vertices have at
least two incoming and two outgoing edges.

3.6.3. Dominating bi-directed edge

A similar rule exists for Vertex Cover (Rule 6 of Fellows, Jaffke, et al., 2018). This is one way to
generalize it for DFVS, also allowing the vertices to be adjacent to uni-directed edges.

Reduction rule 6: Dominating bi-directed edge

If a vertex v dominates a vertex u that it shares a bi-directed edge with, we can immediately
add v to the solution. It dominates such a vertex if both its predecessors and successors are
a superset of the respective neighborhoods of u. This is exactly the case if all of these hold:

(u, v), (v,u) ∈ E
(a, u) ∈ E ⇒ (a, v) ∈ E
(u, b) ∈ E ⇒ (v, b) ∈ E

The predecessors and successors of u may intersect. In this case, v needs to be connected
to these vertices via bi-directed edges too.
Visual notation: Dominating 2-cycle

1

2

i

···

v

u

a

b

h

···

1

2

i

···
u

a

b

h

···

Solution
v

Proof of safeness

Either u or v need to be part of the solution as {u, v} forms a 2-cycle. Suppose v is not part
of the solution. In that case, u only covers the 2-cycle {u, v}, as for any cycle that goes
through u, another cycle exists that contains v instead. Thus, all of these cycles are already
covered by other vertices that are part of such a minimum solution. If we include v, we will
not increase solution size, but may also cover cycles that u would not cover. �

3. Data Reduction Rules 3.6. Existing data reduction rules 47

Reduction rule 6: Dominating bi-directed edge (continued)
Overview

New n n−1 The vertex v gets removed.

New m ≤ m−2 The edges (u, v), (v, u) are removed. If v has other neighbors,
the connecting edges get removed as a result of deletion.

New k k−1 We immediately include v in the solution.

Matching time O (m2)

For every edge, we may test if the reverse edge resulting in a
2-cycle exists in constant time. Comparing the neighborhoods
of up to m neighbors each for inclusion of one set within the
other depends on the number of neighbors of either vertex.

Implementation

Implemented in reductions.AddMoreImportantSibling.

3.6.4. Contract isolated paths of length three

The following reduction rule is a fairly direct adaptation of a rule for Vertex Cover (Lemma 4.1 in
Fomin, Grandoni, et al., 2009, Rule 7 of Fellows, Jaffke, et al., 2018). Since it uses the principle
that it only relies on the local context, it can be seen as the blueprint for further adaptation of
rules that have been defined for Vertex Cover.

Reduction rule 7: Contract isolated paths of length three

If there is a bi-directed path u, v, w in the graph, such that v is otherwise completely iso-
lated and u and w are connected to the rest of the graph only via bi-directed edges,
we can contract u and w into a single vertex uw, thus retaining all previous neighbors
of both vertices and remove v. Once we have solved the remaining graph, we are
able to determine if v or u and w need to be included in the solution. If uw is in-
cluded, we need to add u and w. If uw is not present in the solution, we will add v.
Visual notation: Contract isolated paths of length three

v

w

u

N(w)

N(u) uw

N(w)

N(u)

Solution
uw ∈ S⇒ u,w
uw /∈ S⇒ v

Remove uw from S

48 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 7: Contract isolated paths of length three (continued)

Proof of safeness

Suppose w is part of the solution. If v was part of the solution too, we would be able to
obtain a solution of equivalent size by including u instead. If w was not part of the solution,
v is because of the 2-cycle connecting both. If u was part of that solution, we would have
been able to find an equivalent solution by replacing v with w. We can thus assume that
w and u will always be part of the solution at the same time, if not v gets added, which is
cheaper if neither is selected. �

Overview

New n n−2 Vertex v is removed and u,w are contracted into a single vertex

New m ≤ m−4 Edges {v, w} , {v, u} are removed. If u,w shared predeces-
sors or successors, duplicates are removed.

New k k−1 We add one vertex to the solution after having solved the re-
duced instance.

Matching time O (n)
For vertices connected with exactly two bi-directed edges, we
test if there is a non-edge between the neighbors. These are
constant time operations.

Implementation

In reductions.ContractLines.

To implement this behaviour, we need to rely on some form of recursion. Instead of manually
calling the solver in this step, we implemented a log of pending changes, see Section 3.2. This
is especially useful, as several other rules work similarly. An example is shown in Figure 3.2.

Actually, this rule would allow for u andw to be part of uni-directed edges. We however have to
ensure that a contraction does not create new induced cycles. In, but not limited to, the following
examples on a graph G, this is the case.

If (u,w) , (w, u) are non-edges:

1. If u and w are part of different components in directed(G).
2. If both →N [u]directed(G) ⊆ →N [w] and N→ [u]directed(G) ⊆ N→ [w].

If an edge (u,w) exists:

3. If excluding (u,w) from the graph no other induced u w-path exists, we can delete
(u,w) and immediately apply the rule, again closing any paths that used (u,w). Other-
wise, contracting u and w into uw from the u w-path would have created a uw uw-
cycle.

3. Data Reduction Rules 3.6. Existing data reduction rules 49

These structures have been uncommon in practice, so the implementation of the rule was kept
simple to avoid errors. These could verified using search similar to Reduction rule 15.

3.6.5. Contract neighbors of degree three vertices

The rule above was able to eliminate vertices with only bi-directed edges of degree two. Ex-
panding this to vertices of degree three naturally follows. There are now four cases of possible
edges between the three adjacent vertices, depicted in Figure 3.3.

• All edges, 3.3a
This case is already handled by Reduction rule 6, when consecutively applying it on a
with the bi-directed edge {v, a}, b with {v, b} and c with {v, c}, which adds all neighbors
a, b, c into the solution, allowing v to be removed by Reduction rule 4.

• Two other edges, 3.3b
The vertex b will be added to the solution by Reduction rule 6. v can now be processed
by Reduction rule 7, contracting a and c.

• One edge between a, b present, 3.3c
This case can be handled similarly to Reduction rule 7. We remove v and connect the
neighborhood of c to a and b and add c into the solution if both a and b are in the solution
of the remaining instance and v otherwise.

• Vertices a, b, c are an independent set, 3.3d
We create three vertices ab, ac, bc. Each of these vertices will be connected to both neigh-
borhoods of the respective vertices. Furthermore, edges (ab, ac), (ac, ab), (ac, bc), (bc, ac)
are added and v, a, b, c removed from the graph. We can now observe that we either
need to include ac or at least two vertices into the solution. If ac is included, we include v
since a, b, c did not need to cover their neighborhoods. If two were selected we include
the vertex which has its only previous neighborhood completely covered by the two ver-
tices now selected for the solution. We also include v to cover the edges to the other
two remaining vertices. If all were selected, we include a, b, c as all their neighborhoods
needed to be covered.

v

a

b

c

(a) All edges

v

a

b

c

(b) Two edges

v

a

b

c

(c) One edge

v

a

b

c

(d) No edges

Figure 3.3.: Possible neighborhood layouts of vertices with degree three

50 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

This rule is adapted from a rule for Vertex Cover (Rule 8 of Fellows, Jaffke, et al., 2018). Its
proof is similar to Reduction rule 7 and otherwise argues in the same way as for Vertex Cover,
so we will leave it to Fellows, Jaffke, et al.

Reduction rule 8: Contract three connected neighbors

If a vertex is connected with bi-directed edges to neighbors a, b, c which contain exactly the
bi-directed edge {a, b} and are only adjacent to bi-directed edges, we can contract c into
the other vertices thus decreasing n and k.
Visual notation: Contract three connected neighbors

v

a

b

c

N(a)

N(b)

N(c)

a

b

N(a)

N(c)

N(b)

Solution
a,b ∈ S⇒ c

a /∈ S ∨ b /∈ S⇒ v

Overview

New n n−2 Vertices v and c are removed.

New m ≤ 2m−8 Edges from the neighborhood N(c) may be duplicated, four
bi-directed edges are removed.

New k k−1 Vertices v or c would have been additionally selected.

Matching time O (n2)
We search for vertices with exactly three bi-directed edges.
We then need to verify that exactly the edges (a, b), (b, a)
connect these three neigbours.

Implementation

In reductions.DealWithDegreeThree.

In fact, this is a special case of Fellows, Jaffke, et al. (Rule 8, 2018) where a vertex with a
neighborhood being partitioned into exactly two cliques was removed. These structures however
are fairly unlikely within our graphs and would create a large overhead while contributing fairly
little to practical solving since a large number of edges is created.

This following rule is adapted from a Vertex Cover rule as well (Rule 9 of Fellows, Jaffke, et al.,
2018) and we again refer to its proof for Vertex Cover.

Reduction rule 9: Contract independent degree three neighbors

If a vertex is connected with bi-directed edges to neighbors a, b, c which form an indepen-
dent set and are only adjacent to bi-directed edges, we can contract them into three new
vertices and remove v, thus decreasing n by one.

3. Data Reduction Rules 3.6. Existing data reduction rules 51

Reduction rule 9: Contract independent degree three neighbors (continued)

Visual notation: Contract independent neighbors of degree three vertices

v

a

b

c

N(a)

N(b)

N(c)

ab

ac

bc

N(a)

N(b)

N(c)

Solution
I := {ab,ac,bc}
S ∩ I = {ac}⇒ v

S ∩ I = {ab, ac}⇒ v, a
S ∩ I = {ab, bc}⇒ v, b
S ∩ I = {ac, bc}⇒ v, c

I ⊆ S⇒ a, b, c
Remove I from S

Overview

New n n−1 Vertex v is removed, the other three are replaced by a coun-
terpart.

New m ≤ 2m−2
Edges from the neighborhoodsN(a), N(b), N(c)may be du-
plicated, three bi-directed edges adjacent to v are replaced
by two for the newly created combined vertices.

New k k
Solutions where v would have been selected are pushed to
ac, the value therefore does not change.

Matching time O (n)
We search for vertices with exactly three bi-directed edges.
We then need to verify that the neigbours are independent.
This is possible in constant time.

Implementation

In reductions.DeleteThreeIndependent, unused.

In practice, this rule increased running times as it creates a large number of additional edges,
although it reduces the solution size by one.

3.6.6. Crowns

Crown rules have been successfully used for Vertex Cover kernelization (Abu-Khzam et al.,
2007) and, with a few modifications, can be translated to DFVS.

Reduction rule 10: Crowns
A crown consists of two sets of vertices I , H

1. Vertices in I are an independent set.
2. H contains at least as many vertices, |I| ≥ |H|.

52 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 10: Crowns (continued)
3. Vertices in I are only connected to vertices in H .
4. There is a matchingM on the bi-directed edges between I andH such that all vertices

in H are matched.
As a result, I and H do not share any vertices, I ∪ H = ∅. In that case, we can add all
vertices in H directly into the solution and remove vertices in I .
Proof of safeness

By definition, there is a matching from all vertices in I to vertices in H . For all these edges,
either adjacent vertex needs to be part of the solution. Since the matching size is |H|,
adding all vertices in H is such a minimum solution while possibly covering other cycles as
well. �

Overview

New n n− |I| − |H| All vertices in I , H , are removed.

New m ≤ m− 2 |H|
All edges between I andH are removed, at least the re-
quired ones from the matching. Further edges connected
to H are also removed.

New k k − |H| we add all vertices in H into our solution.

Matching time O (
√
n ·m)

In principle, crown rules are efficiently implementable
by first computing a matching and then augmenting it,
essentially based on flow algorithms

Implementation

In CrownReduction, partial

Vertices inH may be connected to any other vertices in the graph, including directed edges. In
general, we disallow vertices in I to be connected to other vertices, as this would invalidate the
argument we used.

However in some cases, we are still able to apply the rule. Essentially if all induced cycles
vertices in I lie on at some point pass through H . Specifically, we do not allow cycles only
within I .

1. We can allow any directed edges from or toH . All possible paths through these vertices
would be covered by H .

2. We can furthermore allow paths containing edges from anywhere in the graph to enter I
at vertices Iin ⊆ I and leave I through Iout ⊆ I if these do not intersect, Iin ∩ Iout = ∅,
and are not connected and there are no vi ∈ in, vo ∈ out with (vi, vo) ∈ E(G). Since
they visit a vertex in H , they are covered for our minimum solution.

3. If every path leaving or entering I at some point passes through H or is closed by a
shorter cycle. We could test this in a similar fashion as in Reduction rule 15.

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 53

We only implemented a search for easy to find small crowns. A sensible approach for finding all
feasible crowns would be computing the crowns on the undirected subgraph and determining
which of these are valid on the directed graph.

Crowns may also be identified with an LP-based approach (Abu-Khzam et al., 2007). If we
already compute LPs for example for lower bounds, we might reuse the result of such computa-
tions.

3.6.7. Single disjoint cycle

If a vertex v lies on only one disjoint cycle, we can safely shortcut it (Rule 5 of R. Fleischer et al.,
2009). There is at least one other vertex that dominates it and could be selected for the solution
instead. This is a generalization of Reduction rule 5. We abandoned implementing this rule as
such a case hardly ever occurred in our test data and further rules like Reduction rule 14 would
in such a case likely remove edges of such constructs.

3.7. Remove edges not on induced cycles

Many of these reduction rules were derived from other rules, especially rules known to be work-
ing for Vertex Cover.

The most interesting principle however, was discovered by Lin and Jou (2000). Only induced
cycles matter for solving DFVS. This is analogue for example to the Hitting Set edge domination
reduction rule (Abu-Khzam, 2007; Weihe, 1998) that allows us to ignore sets that are supersets
of other ones. If we form a Hitting Set of all cycles, only the sets that represent induced cycles
will remain.

Thus, if an edge does not lie on an induced cycle, we can remove it immediately. As a conse-
quence, we can remove vertices that do not lie on induced cycles as well. In order to be able
to remove these edges, we need to solve the following Edge on Induced Cycle problem.

Problem 10: Edge on Induced Cycle
Input: Graph G, an edge e ∈ E(G)
Output: Does e lie on an induced cycle in G?

Unfortunately checking whether a vertex lies on an induced cycle is NP-hard (Fellows, Kra-
tochvil, et al., 1995; Lubiw, 1988). Similarly, Edge on Induced Cycle is NP-hard as well –
this even applies to graphs that become acyclic when removing a single edge (Dirks, Gerhard,

54 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

et al., 2024). We therefore cannot parameterize this by the size of a DFVS on the instance.
We will formulate multiple smaller rules, that solve the inverse problem and can be implemented
efficiently in practice.

3.7.1. Strongly connected components

A common approach to solving DFVS that builds upon this observation is splitting the graph into
its strongly connected components and solving each component independently (Rule PIE of Lin
and Jou, 2000, Swat, 2022b).

This is not exactly a reduction rule as that alone does not change the size of the instance. We
however treat it as a reduction rule since edges between strongly connected components are
removed in this step. It is best applied after the more simple reduction rules and before more
expensive ones should be computed.

Most approaches found in the literature will apply some of the aforementioned reduction rules,
then compute all strongly connected components and continue with computing on each compo-
nent individually. Although algorithms for computing these components with running time linear
in m exist (Tarjan, 1972), they produce a large overhead in discovering individual strongly
connected components. An approach that we have found to be more efficient was relying on a
recursive algorithm (L. K. Fleischer et al., 2000) and applying the more simple reduction rules
ahead of each recursion step. This outweighed the additional logarithmic costs, especially since
it can be computed in linear time when the graph already contains just a single component.

Reduction rule 11: Strongly connected components

We pick an arbitrary vertex v. We then compute the set of vertices →V that can reach v
with a path in G, and the set of vertices that v can reach, V →, as seen in Figure 3.4b. v is
included in both of these sets. The intersection →V ∩V → is a strongly connected component
and can be solved independently. We can now recurse on →V \ V →, V → \→ V and
V (G) \ {→V ∪ V →} independently and start by applying the simple reduction rules. In
case of Figure 3.4c, this would immediately remove three vertices that would otherwise be
independent strongly connected components as in Figure 3.4d (assuming that shortcut rules
are not applied).
In practice, it is best to find the largest component first. We therefore attempt to select a
vertex of high in- and out-degree, as this is more likely to be placed in a larger component.
We achieve this by picking the vertex with the largest product of in- and out-degree, as
displayed in Figure 3.4a.

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 55

Reduction rule 11: Strongly connected components (continued)

Proof of safeness

Per definition a cycle can only live within one strongly connected component. As such,
there cannot exist a cycle that does not get hit by the solution within any strongly connected
component solved independently. �

Overview

New n n No vertices are being removed.

New m ≤ m
No edges are added. If there were edges between different
strongly connected components, these will not appear in any
of the produced instances.

New k ≤ k,≥ k
4

In case we are able to separate several strongly connected
components, their sizes will add up to k, thus reducing the
k for individual instances. A single application creates up
to four separate instances that divide that k between each
other.

Matching time O (n2)
We perform two BFS and compare the resulting sets after-
wards. This is just for a single application of the rule.

Implementation

In reductions.Fleischer.

56 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

62 2

24 3

6

2

3

11121

12121

11

(a) Graph with products of in- and out-degree

v

(b) Subsets of vertices reaching v and vertices reachable from v

v

V → ∩→ V →V \ V → V → \→ V V (G) \ {→V ∪ V →}
(c) Strong connected component of v and subsets that can now be handled independently

(d) Isolated strong connected components, not computed at once in practice

Figure 3.4.: Strong connected components

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 57

3.7.2. Remove directed dead ends

Similar to Reduction rule 4, we can remove edges that immediately lead to or come from a vertex
that do not have a same directed predecessor or contain only bi-directed edges otherwise.

Reduction rule 12: Remove directed dead ends
If for an edge e = (s, t) the vertex s does not have a predecessor that is not a suc-
cessor at the same time, we can remove e. This works analogous for successors of t.
Visual notation: Remove without directed predecessors

1

2

i

···

sa

b

h

···

1

2

i

···

sa

b

h

···

Solution
ø

Visual notation: Remove without directed successors

1

2

i

···

t a

b

h

···

1

2

i

···

t a

b

h

···

Solution
ø

Proof of safeness

There can be no cycle going through e that would not be covered in the solution anyway,
as either vertex of a 2-cycle needs to be included. �

Overview

New n n No vertices are being removed.
New m ≤ m Any identified edges may be removed.
New k k Vertices are not touched.

Matching time O (m)

For each vertex, we need to test if all uni-directed edges of a ver-
tex have the same direction. Each edge only gets tested twice.
This would result inO (n+m), however them takes precedence.
A specialized graph implementation might track this and could
thus only need to test n vertices.

Implementation

In CombinedRecursiveReduction, see Section 3.10.

58 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

3.7.3. Remove if there is no directed cycle

In the previous rule we already observed that we do not need to pay attention to 2-cycles. This
remains true even if the 2-cycles occur further down the path. In effect, we can independently
work on the directed subgraph (Rule PIE of Lin and Jou, 2000, Swat, 2022b).

This rule was reintroduced independently by Červený et al. (Rule 5, 2022).

Reduction rule 13: No directed cycle

If an edge does not lie on a cycle in the directed subgraph, we can remove it.
Algorithm

Input: Graph G, edge (s, t)
Output: Is (s, t) definitely not induced?

1 Q := {t} // Initialize queue with single queued vertex
2 R := {t} // Track vertices that have been queued
3 if (t, s) ∈ E(G) then
4 return false // s, t are a 2-cycle
5 end
6 while Q is not empty do
7 v := poll(Q) // Select and remove first element in queue
8 for each w ∈ N→ [v] do
9 if (w, v) /∈ E(G) then // The edge (v, w) was directed

10 if w = s then
11 return false // We found a directed t s-path
12 else if w /∈ R then // We add vertices only once
13 Q← Q ∪ {w} // Add w to the queue
14 R← R ∪ {w} // Remember not to add w again
15 end
16 end
17 end
18 end
19 return true // We did not find a directed t s-path

Proof of safeness

There is no induced t s-path in the graph. The search followed all edges, except for edges
that definitely lie on a 2-cycle, making all cycles that would use it non-induced. �

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 59

a b c

e f g

h i j

d

Figure 3.5.: Edge not on a directed cycle

Reduction rule 13: No directed cycle (continued)
Overview

New n n No vertices get removed directly.
New m m−1 The edge is removed.
New k k Vertices are unchanged.

Matching time O (m2)
We inspect each edge at most once and apply this rule for
each edge.

Implementation

Implicitly in DeleteNonInducedEdge

An example is shown in Figure 3.5. The edge (a, b) does not lie on a cycle in the directed
subgraph and could thus be removed.

After a successful application of the rule, Reduction rule 12 should be applied recursively to
remove larger acyclic components at once. We can furthermore modify this search to remember
the edge it used to first reach a vertex. In this case, we could directly reconstruct the cycle we
have found and mark all edges on it as processed, removing the need to perform the BFS again.

3.7.4. Remove if there is always a shorter cycle

If the source vertex of our edge contains an edge to a vertex we would visit, any path back to
it would close a shorter cycle. We can thus ignore these in our search. The same applies to
predecessors of the target vertex.

This makes this rule a generalization of Lin and Jou (Rule DOME, 2000). It was introduced
independently by Červený et al. (Rule 6, 2022).

60 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

e f g h i

j k l

d

Figure 3.6.: Edge with edges allowed for search and forbidden vertices marked

Reduction rule 14: Remove ignoring shorter cycle

If for every cycle C an edge e = (s, t) lies on, a vertex w ∈ C such that a different edge
(s, w) or (w, t) exists, we can remove e.
We can implement this rule bymodifying our breadth-first-search from t to s. We can exclude
all vertices that are either a direct predecessor of t or a direct successor of s. Note that this
even applies to bi-directed edges, since this implies a 2-cycle which needs to be covered as
well.
Modification for the algorithm of Reduction rule 13

… … … …
8 return false
9* else if

w /∈ R // We add vertices only once
and

(s, w), (w, t) /∈ E(G) // Ignore if shortcut exists
then

10 Q← Q ∪ {w}
… … … … …

Proof of safeness

If we look at the Hitting Set set systems that our DFVS instance would produce, every set of
a cycle going through e would be a subset of a different set via the alternative edge directly
leading to w. The instance without the respective sets is therefore equivalent. �

Overview

New n n No vertices get removed directly.
New m m−1 The edge is removed.
New k k Vertices are unchanged.

Matching time O (m2)
We additionally test for the existence of two edges which is
possible in constant time.

Implementation

Implicitly in DeleteNonInducedEdge

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 61

An example for allowed vertices and edges for a BFS for the edge (a, b) is shown in Figure 3.6.
We may not visit f since it is a successor of a. Likewise, we can ignore g, h as predecessors of
b. Bi-directed edges like {d, e} remain irrelevant for (a, b). The BFS finds a path in the end, we
are thus not allowed to remove (a, b).

3.7.5. Remove edges while tracking cycles in predecessors

The example in Figure 3.6 from the previous section illustrates a case where Reduction rule 14
does not remove (a, b) even though it did not lie on an induced cycle. The path c, i, l was
already a cycle. In fact, all other edges in the example lie on an induced cycle and would thus
not be removed either.

We can further modify our search from Reduction rule 14 to rule out cases where we would
follow a path during search that contains an induced cycle on its own. Our approach will not
find all occasions of edges not on induced cycles, but usually finds a lot of useful results.

The non-induced edge (a, b) of the example in Figure 3.6 is now discovered as depicted in
Figure 3.7. We do not visit h as b is a forbidden successor of c. We stop our search in l as c is
a forbidden successor of l.

Reduction rule 15: Shorter cycle in predecessors

We perform a BFS. For every vertex, we track a set of disallowed successors. We do not visit
vertices if they have an edge to a vertex on our previous path. In case we find a different
path to a vertex, the disallowed vertices will be the cut of both. In case this leads to vertices
being allowed whereas they were not before, we need to search from these vertices again.
This implicitly includes disallowing edges (s, w), (w, t) for a visited vertex w as in Reduction
rule 14. If we cannot find a path back to s using these and the previous rules within the
BFS, we can safely delete our edge.

a b
{b}

c
{b,c}

e f g h i
{b,c,i}

j k l

d

7b

7c

Figure 3.7.: Sets of disallowed successors on the example from Figure 3.6

62 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 15: Shorter cycle in predecessors (continued)
Algorithm

Input: Graph G, edge (s, t)
Output: Is (s, t) definitely not induced?

1 Q := {t} // Initialize queue with single queued vertex
2 R := {t} // Track vertices that have been queued
3 Ft := {t} // Track forbidden successors, disallow t for t
4 while Q is not empty do
5 v := poll(Q) // Select and remove first element in queue
6 for each w ∈ N→ [v] do
7 wallowed ← true // w is allowed in the current search
8 for each f ∈ Fv do // Successors forbidden for t v-paths
9 if (w, f) ∈ E(G) then // w had a forbidden successor

10 if w 6= s or f 6= t then // Ignore if edge is (s, t)
11 wallowed ← false // Disallow visiting w from v
12 end
13 end
14 end
15 if wallowed then // Edge (v,w) did not close a shorter cycle
16 if w = s then
17 return false // We found a directed t s-path
18 else if w /∈ R then // First encounter of w
19 Q← Q ∪ {w} // Add w to the queue
20 Fw := Fv ∪ {w} // All disallowed of v and w
21 R← R ∪ {w} // We now have encountered w

22 else // Subsequent encounter of w
23 N := Fw ∩ (Fv ∪ {w}) // New disallowed successors
24 if N (Fw then // Less disallowed
25 Fw ← N // Update disallowed successors
26 if w /∈ Q then
27 Q← Q ∪ {w} // Add w back into the queue
28 end
29 end
30 end
31 end
32 end
33 end
34 return true // We did not find a directed t s-path

3. Data Reduction Rules 3.7. Remove edges not on induced cycles 63

Reduction rule 15: Shorter cycle in predecessors (continued)

Proof of safeness

If we look at the Hitting Set set systems that our DFVS instance would produce, every set
of a cycle going through e would be a subset of a different set because of a cycle closed
within the searched path. The instance without the respective sets is therefore equivalent. �
Overview

New n n No vertices get removed directly.
New m m−1 The edge is removed.
New k k Vertices are unchanged.

Matching time O (m · n2)

A removal of the set elements may trigger another update
of successors of this vertex. Every vertex is initially assigned
a set containing at most all n vertices of the graph. Each of
its up to n removals of vertices might trigger another search.
The search itself is possible in O (n2) and occurs at most n
times. We apply this rule for all m edges.

Implementation

In DeleteNonInducedEdge

This does not cover specific cases where a combination of several cycles would in theory block
a path but no individual one does it alone. In such cases, we could possibly look into tracking
relying on logical expressions instead, but their evaluation would be NP-hard since we could
otherwise solve the initial problem.

We were able to show that this algorithm becomes exact on the class of all graphs that exclude
the graph in Figure 3.8 as a directed minor (Dirks and Gerhard, 2024). A directed minor is
very similar to its undirected counterpart, however takes directions of edges into account, while
preserving paths. Although this is fairly restrictive, it allows arbitrarily long cycles and DFVS
solution sizes.

a

b

c

d

Figure 3.8.: Directed minor to exclude for our Edge on Induced Cycle heuristic

64 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

3.8. Pick cycle dominating vertices

Since Reduction rule 6 was very effective, we have searched for rules that follow the same
principle. The two main ways to relax its very strict requirements are extending the scope of the
neighborhood that is taken into account and to generalize it to cycle lengths greater than two.

3.8.1. Pick vertices weakly dominating bi-directed edge

We were able to construct a new rule related to Reduction rule 6, although it does not subsume
it. Instead of requiring v to be adjacent to a superset of neighbors of w, we only consider either
the incoming or outgoing neighbors.

Reduction rule 16: Pick cycle dominating vertices on bi-directed edges

Let us look at a vertex v that it lies on a 2-cycle with a vertex w. If w does not lie on a cycle
such that we do not visit vertices that v has a 2-cycle with, we can add v to the solution.
Proof of safeness

Suppose that w was part of the solution and v was not. In that case, all neighbors of v
would need to be part of the solution as well, to cover the 2-cycles that v lies on. In this
case, we can find a solution of equivalent size by removing w and including v. �

Overview

New n n−1 The dominating vertex v is added to the solution.

New m ≤ m−2 The bi-directed edge {v, w} is removed. Any further adjacent
edges of v are removed.

New k k−1 The dominating vertex v is added to the solution.
Matching time O (m2) We perform a search from w to w.

Implementation

In DeleteObsoleteOnTwoCycle

The application of this rule usually allowed us to shortcut w with Reduction rule 5, since our
graphs were most likely to contain these structures if v has a bi-directed edge to a single successor
of w.

In principle, we are able to adapt our search approaches from Reduction rules 14 and 15 for
this rule. We can use all vertices that v has a bi-directed edge with as forbidden vertices and
will thereby only respect induced cycles. Depending on the desired trade-off between quality
and performance, we can chose to track forbidden successors.

3. Data Reduction Rules 3.8. Pick cycle dominating vertices 65

We could also further restrict our rule to either cover all successors or predecessors of w with bi-
directed edges of v to improve its performance while omitting possible vertices to directly include
in the solution. Based upon our evaluation, the decrease in solution size however outweighs this
additional computation time.

3.8.2. Strongly dominating cycle

This is a generalization of Reduction rule 6 to allow longer cycles. It can be implemented very
easily, since there is always exactly one suitable successor if the rule can be applied.

Reduction rule 17: Strongly dominating cycle

If a vertex v dominates a cycle C , such that for all vertices w ∈ C,w 6= v the predecessors
and successors are a superset of their counterparts of w except for vertices in C itself, we
can immediately add v to the solution.
Algorithm

Input: Graph G, an edge (v, w)
Output: Does v dominate a cycle through (v, w)?

1 vprevious := v // Start with v as the previous vertex
2 vcurrent := w // Use w as the next vertex
3 while vcurrent 6= w do
4 if →N [vcurrent] \ {vprevious} * →N [v] then
5 return false // v does not have a counterpart to a predecessor
6 end
7 F := N→ [vcurrent] \N→ [v] // Find successor on cycle
8 if |F | 6= 1 then
9 return false // v does not dominate vcurrent on cycle

10 end
11 vprevious ← vcurrent // Move on to the next vertex
12 {vcurrent} ← F // Unwrap single vertex in F to inspect next
13 end
14 return true // We can immediately add v

Proof of safeness

Suppose v was not part of the minimum solution. Any vertex of C needs to be part of a
DFVS. Thus another vertexw ∈ C is included in the solution. Ifw was covering a cycle other
than C , this has so far not been covered, even though there are the same edges leading to
v. However, now we could obtain a solution of equivalent size by including v instead of w,
contradicting our claim. �

66 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 17: Strongly dominating cycle (continued)
Overview

New n n−1 The vertex v gets removed.

New m ≤ m−2 The edges adjacent to v are removed. At least two edges
were part of C

New k k−1 We immediately include v in the solution.

Matching time O (m · n2)
We start a search for each of the m edges. We com-
pare the predecessors and successors for each vertex dur-
ing search and there is always a single possible successor.

Implementation

Implemented but removed

We implemented this rule, however decided against using it, since it was only able to match
very few vertices.

3.8.3. Weakly dominating cycle

We are able to generalize Reduction rule 17 further. We only need to ensure that we dominate
with respect to all cycles at some point. This increases the implementation difficulty as there now
might be multiple viable successors during search.

Reduction rule 18: Weakly dominating cycle

If a vertex v dominates a cycle C , such that there is an edge (u′, w′) on it, possibly with
u = v or w = v such that for all vertices u on C until and including u′ the predecessors of
u are a subset of their counterparts of v except for their predecessor in C itself and similarly
all successors starting with w′ otherwise only contain other successors of v apart from the
next vertex in C , we can immediately add v to the solution.
Proof of safeness

Suppose v was not part of the minimum solution. Any vertex of C needs to be part of a
DFVS. Thus another vertex v′ ∈ C is included in the solution. Because of our construction,
C does not contain induced cycles that v is not a member of. If v′ was covering a cycle
other than C , this has so far not been covered, even though for all of its incoming paths and
outgoing paths through C a direct edge to or from v exists which would contradict the claim
of a solution. However, now we could obtain a solution of equivalent size by including v
instead of v′, contradicting the claim of v not being part of the minimum solution. �

3. Data Reduction Rules 3.9. Other interesting data reduction rules 67

Reduction rule 18: Weakly dominating cycle (continued)
Overview

New n n−1 The vertex v gets removed.

New m ≤ m−2 The edges adjacent to v are removed. At least two edges
were part of C

New k k−1 We immediately include v in the solution.

Matching time O (m · n2)

We can build two trees using a search, containing possi-
ble successors until u′ and possible predecessors beforew′,
and test for all possible edges between the two if they do
not intersect already. The successive test is hidden in the
O-notation.

Implementation

Not implemented

3.9. Other interesting data reduction rules

The following rules were not implemented or we abandoned their implementation quickly when
we did not find instances where the rules could be applied and would produce a notable effect.
Some have appeared in the literature while we found several other reduction rules.

3.9.1. Too many internally vertex disjoint paths

This rule has been included as Rule 3 in Bergougnoux et al., 2021. It is a special case of the
sunflower rule for Hitting Set (Erdős and Rado, 1960; Van Bevern, 2013). It is a generalization
of Rule 6 of (R. Fleischer et al., 2009) to non-edges instead of requiring the start and end vertex
of the paths to be identical.

Reduction rule 19: Too many internally vertex disjoint paths

If there are at least k + 1 internally vertex-disjoint paths from vertex u to v in G, we may
introduce a new edge (u, v) for G′. If u = v, since this would create a loop, we can
immediately add v to the solution.

68 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 19: Too many internally vertex disjoint paths (continued)

Proof of safeness

A solution for G′ is obviously a solution of the same size for G since G is a subgraph.
In the other direction, suppose a solution of size k exists forG. Since there are at least k+1
internally vertex-disjoint u, v paths, at least one of these u, v paths is not covered by a vertex
in the solution.
For every path v u, a vertex within this path, possibly v or u must hence be included in
the solution. This would also cover all cycles shortcut by the newly introduced edge (u, v).
If no path v u exists, the edge (u, v) does not contribute to a cycle, thus not increasing
the solution size. �

Overview

New n n No vertices get removed.
New m m+1 An edge is introduced.
New k k Vertices are unchanged.

Matching time O (n2 ·m ·
√
n)

There are at most n2 pairs of vertices to check. Each
application is possible with a standard (s, t)-cut pos-
sible in O (

√
nm), we would be able to stop after

confirming a flow greater than k.

Implementation

Not implemented

This rule is visualized in Figure 3.9. It will likely allow further applications of rules such as
Reduction rule 14, although it increases m by one.

Practical implementations should only inspect non-edges since adding an edge does not make
sense if it is already present. Furthermore, only vertices with out-degree k + 1 and in-degree
k + 1 are suitable as u and v, respectively. Since even this was barely the case on the PACE
challenge instances, this rule was not implemented.

This rule could be further extended. If we remove the set of disjoint v u-paths P , any lower
bound l for DFVS on the remaining graphG[V (G) \

⋃
p∈P V (p)] can be subtracted from k+1,

allowing us to introduce an edge if there are more than k + 1 − l disjoint cycles. Computing
lower bounds for DFVS will be discussed in detail in Section 5.6.2 on page 106.

Unfortunately, we are not aware of techniques that would allow us to obtain lower bounds on
this remaining graph with theoretical guarantees. A good candidate would have been a Cycle
Packing, however this problem itself is NP-hard (Nutov and Yuster, 2004), preventing theoretical
results from this approach.

3. Data Reduction Rules 3.9. Other interesting data reduction rules 69

t

s

k+1 disjoint

t

s

k+1 disjoint

Figure 3.9.: Introduce edge if more disjoint paths than vertices in solution exist

3.9.2. Dominated cliques

This rule can be understood as an attempt to generalize crowns, Reduction rule 10, and could
also be adapted for Vertex Cover.

Let us look at two independent vertices v, u that have neighborhoods N(v), N(u) that each
contain exactly two cliques. A vertex cannot be included in both cliques since it would otherwise
have been included by Reduction rule 6. Further bi-directed or uni-directed edges between the
cliques are allowed. Now, if N(u) ⊆ N(v), we can add N(u) into the solution and remove u.

Proof Suppose u was part of the solution. In that case, two vertices of N(u), one of each
clique, would not be selected. As a result, v would need be part of the solution too. We could,
however, create a solution of the same size by not including u and v and selecting all of N(v)
instead. �

We cannot immediately include N(v) though, as a minimum solution may include v but not u.

3.9.3. Tail-Biting Worms

The previous rule allows for creating several rules following a similar argument. Let us look at
an independent set of vertices H = v1, v2, . . . , vl that have neighborhoods N(v1), . . . , N(vi)
that each contain exactly two cliques. Further edges between the cliques are allowed. Now,
if ∀i ∈ [1, l − 1] : N(vi) ⊆ N(vi+1) and N(vl) ⊆ N(v1), we can add

⋃
i∈[1,l]N(vi) into the

solution and remove H .

Proof Suppose any vi was part of the solution. In that case, a vertex of both cliques would not
be selected, thus both neighbors would need to be part of the solution too, chaining to all other
vertices in H . We could, however, create a solution of the same size by not including H and
selecting all the neighborhoods instead. �

70 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

3.9.4. Tunnels

A tunnel is a segment between two vertex cuts C1, C2 with |C1| ≤ |C2| that has no cuts smaller
than |C2| in between nor other edges entering or leaving it and does not contain cycles. Vertices
in the incoming cut may only have predecessors outside of the tunnel, the ones of the outgoing
cut only successors, possibly between the cuts. The cuts may also share vertices. We can
remove all internal vertices of a tunnel and add an edge between each pair of vertices if they
were connected by a path in the original segment between the cuts. This reduction is safe.

Proof Suppose any internal vertex v and possible further internal vertices S ′ ⊇ {v} of the
tunnel were part of the solution S ⊇ S ′.

If |S ′| ≥ |C2|, we could obtain a solution of equivalent size by including all of C2 and possibly
even a smaller solution when including C1.

If there were less than |C2| internal vertices S ′ in the solution, then for each c1 c2 with c1 ∈
C1, c2 ∈ C2 that contains v, there is at least one p = c1 c2 that does not contain any vertex
in S ′, otherwise we would have obtained a smaller cut. Each cycle closed by a p′ = c2 c1
however needs to be covered and since no vertices in p are in S, it must be covered by a vertex
in p′. Now, each cycle covered by v is also covered by another vertex v′ in some other p′,
leading to a smaller solution size when excluding v. �

The smallest tunnel not removed by other reduction rules is an independent pair of vertices
v1, v2 pairwise connected to another pair of vertices and subsequently to vertices w1, w2. We
can remove the intermediate vertices and introduce shortcuts as depicted in Figure 3.10a. The
two framing cuts do not need to have the same size, as long as there is no cut between them
that is smaller than the larger of the two, 3.10b.

3.10. Recursive application

For an implementation that is efficient in practice, the most simple and easy to compute rules
can be merged into a single combined rule. The best suitable candidates are Reduction rules 1,
4, 5 and 12. These rules are not context dependent and only depend on a vertex and its
most immediate neighbors. They are applied recursively, an application on a vertex causes its
neighbors to be marked for re-inspection.

We designed the algorithm to only work on a predefined set of vertices, supplied in a queue
Q. Initially, we call it populated with all vertices V (G) to process the whole graph. After an
application of one of the other reduction rules, we may call it only on the subset of changed
vertices and its neighbors, eliminating the inspection of vertices where no change could have
possibly occurred. The contained rules are simple and therefore do not require a log, we simply
collect a set of vertices S to add to a solution of the reduced instance.

3. Data Reduction Rules 3.10. Recursive application 71

v1

v2

w1

w2

v1

v2

w1

w2

(a) Minimum tunnel example

v1

v2

w1

w2

w3

v1

v2

w1

w2

w3

(b) Wider and unequal cuts

Figure 3.10.: Tunnel examples

This approach extends the recursive application of Kahn’s algorithm (1962).

This has been implemented in reductions.CombinedRecursiveReduction.

72

4. Kernelisation

In this chapter, we will construct a |F |4-kernel for DFVS, which depends on the size of an under-
lying minimum Feedback Vertex Set F . It mostly follows the construction of Bergougnoux et al.
(2021). The main difference is, that it does not require the Feedback Vertex Set as an input,
although it could be approximated.

4.1. Existing kernels for DFVS

As mentioned in Section 2.2 on page 21, finding a polynomial size kernel for DFVS based on
the solution size k is an open problem.

There are two other main approaches within kernelization. The first is choosing a parameter
that is generally smaller than the solution size to further “refine” a kernel compared to one
parameterized by its solution size (Jansen and Bodlaender, 2013). We do not even know
a polynomial size kernel for k, but we can do the opposite by choosing a parameter that is
generally larger than the solution size and thereby restricting the input.

Kernels have been found if the graph is a tournament (Abu-Khzam, 2007; Dom et al., 2010),
that is a graph where all pairs of vertices are connected by an edge, but not in the other direction.
This has been transferred to generalizations of tournaments (Bang-Jensen et al., 2016).

Lokshtanov, Ramanujan, Saurabh, et al. (2019) were able to find a kernel of size (k · l)O
(
η2

)
us-

ing the solution size k and the size l of a Treewidth-η Modulator of the graph. The Treewidth-η
Modulator is sometimes referred to as “Wannabe Treewidth”, as it implies a fixed Treewidth
of η after the removal of l vertices. Furthermore, on graphs with bounded expansion and
nowhere dense graphs, a kernel of size of size O (k) exists if they do not have cycles longer
than a fixed d (Dirks, Gerhard, et al., 2024).

There have been further kernels requiring the remaining graphG[V (G)\S] after having deleted
the DFVS S to contain specific structures (Mnich and van Leeuwen, 2017).

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 73

4.2. A kernel requiring a Feedback Vertex Set as input

Bergougnoux et al. (2021) introduced a kernel for DFVS if a solution F to the Feedback Vertex

Set of the cycle preserving undirected graph G of G is provided. It is inspired by the kernel of
Bodlaender and Dijk (2010) for Feedback Vertex Set.

We will provide a slight modification to this kernel in the subsequent section, but restate its
relevant points here. We will use slightly different notation and especially names for consistency
with the rest of the thesis. Contrary to Bergougnoux et al., we continue to keep track of k as the
DFVS solution size while they employed |F | as its upper bound instead. The kernel depends on
|F | and k.

Bergougnoux et al. first compute an FVSF ofG using a 2-approximation, referring to Bafna et al.
(1999) for an algorithm that computes this in O (min (m · log (n) , n2)). While also handling
weighted instances, it first greedily picks vertices on an undirected cycle for the solution and
removes them afterwards in reverse order if they have become redundant.

4.2.1. Preparing the graph and creating a first bound

Bergougnoux et al. first apply Reduction rules 4 and 5, after which every vertex has at least two
predecessors and two successors. They then apply Reduction rule 19, but only taking pairs of
vertices in F into account. This rule merely adds edges without increasing k. Our size guarantee
will only depend on the number of vertices, this addition therefore does not interfere with our
parameter.

They introduce two additional notions. A potential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edgepotential edge is a pair (u, v) of vertices from F
regardless of an edge (u, v) ∈ E(G) being present. We allow u = v. Since there are |F | (|F |−
1) = |F |2 − |F | ordered pairs of vertices within F because of loops not being reversed, there
are exactly as many potential edges and at most as many non-edges. A vertex v contributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributescontributes to
a potential edge (u,w) if (u, v), (v, w) ∈ E(G). Examples of a vertex v contributing to edges,
non edges, loops and non-loops in F is shown in Figure 4.1.

v

u w
F

(a) Edge

v

u w
F

(b) Non-edge

v

w
F

(c) Loop

v

w
F

(d) Non-loop

Figure 4.1.: A vertex contributing to different potential edges

74 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

After the application of Reduction rule 19, for each non-loop (v, v) and non-edge (u, v) /∈
E(G[F]), there are at most k vertex-disjoint u v paths in G for any vertex or non-edge. There-
fore, for each vertex pair u, v in F , there are at most k vertices contributing to non-edges or
non-loops (u, v) which may also include vertices in V (G)\F . This implies that there are at most
k |F |2−k |F | vertices contributing to non-edges inG[F] and at most k |F | vertices contributing
to loops in G[F] in the original graph G.

Taking A = V (G) \ F , Bergougnoux et al. continued by bounding the number of vertices in
G[A], with regard to k. They bound the number of vertices in sets A0, A1, A2, A≥3 of vertices
with total degree 0, 1, 2 and at least 3, respectively, in G[A].

4.2.2. Bounding vertices of degree zero

Bergougnoux et al. first apply the following Reduction rule 20 on vertices in A0 (2021). Bound-
ing the number of vertices in A0 becomes simple after that. We give it in its generalized form in
which it was also introduced by Červený et al. (Rule 7, 2022).

Reduction rule 20: Floating vertex

If the shortcutting of a vertex v would not introduce any new edges, we can safely remove
v. This is the case if all predecessors of v contain an edge to all of its successors, ∀win ∈
→N [v] : ∃wout ∈ N→ [v] : (win, wout) ∈ E(G).
Visual notation: Floating vertex

1

2

i

···

v

a

b

h

···

1

2

i

···

a

b

h

···

Solution
ø

Proof of safeness

The vertex v can not lie on an induced cycle. Suppose v was part of a minimum solution.
Each cycle that v lies on leads through both one of its predecessors and successors. Let us
denote them as uin and uout. Because of the rules condition, an edge (uin, uout) must be
present too. Therefore, a path uout uin must exist, which gets closed by (uin, uout) and
therefore would need to be covered by the solution, contradicting the initial claim. �

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 75

Reduction rule 20: Floating vertex (continued)
Overview

New n n−1 The vertex v gets removed.
New m ≤ m Any edges adjacent to v are removed.

New k k
Since shorter cycles always exist, v cannot be part of any mini-
mal solution.

Matching time O (n3)
For every pair of predecessors and successors of v, we test if
an edge connecting them exists.

Implementation

Indirectly in DeleteNonInducedEdge

This rule is superseded by Reduction rule 14 in combination with Reduction rule 4.
Proof For any edge (uin, v) leading to v, any successor uout of v will be disallowed during
search of Reduction rule 14, since an edge (uin, uout) exists. This leads to the deletion of all
incoming edges of v. Reduction rule 4 will remove v since it is not adjacent to incoming edges
after that. �

After having applied Reduction rule 20 on vertices in A0, for a vertex a0 ∈ A0, all of its prede-
cessors and successors must have been in F . Because of Reduction rule 4, at least one of either
must have existed, otherwise it would have been reduced. If a0 was not removed by Reduction
rule 20, at least one non-edge in G[F] must have existed. As a result, a0 has contributed to
at least one non-edge or non-loop of G[F] and is one of the k |F |2 − k |F | vertices already
accounted for above.

4.2.3. Bounding vertices of degree one

Bergougnoux et al. continue with vertices in A1. As before, there can only be a limited number
of vertices A1 contributing to a loop in G[F]. The other vertices of degree one will be ensured
to contribute to a non-edge in G[F] and thus bounding the size of A1 by applying another
reduction rule. Let A′

1 ⊆ A1 be the vertices not contributing to a non-edge or loop in G[F].

Because of Reduction rule 5, every vertex has at least two predecessors and successors. Since
vertices a1 ∈ A′

1 do not contribute to a loop, at least one of its predecessors and two successors
or two of its predecessors and one successor are in F . Consequently, there is a pair of distinct
successors and predecessors in F and therefore a1 contributes to a potential edge in G[F].

Bergougnoux et al. apply the following Reduction rule 21 on vertices in A1 to rule out the
existence of verticesA′

1 not contributing to non-edges (2021). We again give it in its generalized
form and show that it is subsumed by our rule.

76 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 21: Covered predecessors and successors

Given a vertex v, if all predecessors but one predecessor p contain edges to all successors,
remove edges from all but this predecessor p. If all predecessors contain edges to all but
one successor s, remove edges to all but this successor.
Visual notation: Covered predecessors

p

1

2

i

···

v

a

b

h

···

p

1

2

i

···

v

a

b

h

···

Solution
ø

Visual notation: Covered successors

s

1

2

i

···

v

a

b

h

···

s

1

2

i

···

v

a

b

h

···

Solution
ø

Proof of safeness

Suppose v was part of a minimum solution. We could then create a solution of the same size
using p or s, respectively. All cycles not leading through p or s are closed immediately and
will thus be covered by some other vertex in the solution. Cycles initially leading through v
are kept intact and thus do not allow for a smaller solution. �

Overview

New n n No vertex gets removed.
New m ≤ m Adjacent covered edges are removed.
New k k Vertices are unchanged.

Matching time O (n3)
For every pair of predecessors and successors of v, we test if
an edge connecting them exists.

Implementation

Indirectly in DeleteNonInducedEdge

Reduction rule 21 is subsumed by Reduction rule 14.

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 77

Proof In case predecessors of v with one exception p are covered, Reduction rule 14 will
remove all edges (uin, v) with uin ∈ (→N [v] \ {p}), since for all uout ∈ N→ [v], an edge
(uin, uout) exists, preventing the search from completing. �

After the application of this rule, Reduction rule 5 will shortcut v. All vertices in A1 are therefore
part of the k |F |2 − k |F | vertices already accounted for above.

4.2.4. Bounding vertices of degree greater than three

Since G[A] is a forest, there are less vertices of degree greater than or equal three than leaves
minus one. In Section 4.2.3, we were able to bound the number of leaves in G[A] to k |F |2 −
k |F |. As a result, there are at most k |F |2 − k |F | − 2 vertices in A≥3.

In the example in Figure 4.2, there are three vertices e, f, i with a degree greater than or equal
three in G[A]. We omitted edges adjacent to vertices in F .

78 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

d e f g h

i j k l m n

o p q

a b c

F

F

F

F

F

F

F F

Figure 4.2.: Undirected forest outside of the underlying Feedback Vertex Set

4.2.5. Bounding the number of paths

Because of Reduction rules 4 and 5, each vertex inA2 has at least two neighbors in F . Bergoug-
noux et al. continue to distinguish three types of vertices in A2:

1. Vertices with two incoming edges in G[A], called source verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource verticessource vertices A2,in.
2. Vertices with two outgoing edges in G[A], sink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink verticessink vertices A2,out.
3. Vertices with one predecessor and one successor in G[A], balanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced verticesbalanced vertices A2,both.

In the example in Figure 4.2, m is a source vertex and n is a sink vertex. The vertices a, e, j, q
are balanced vertices.

Bergougnoux et al. now continue by obtaining a bound of the number and length of inclusion-
wise maximal directed paths inG[A] with all internal vertices inA2. The endpoints of such paths
s t are either in A2 if all predecessors of s or all successors of t have been in F or can lie in
A1 or A≥3. These are depicted in Figure 4.3 on the graph from Figure 4.2 with vertices in A1

or A≥3 highlighted.

If at least one endpoint lies in A1 or A≥3, the inclusion-wise maximum path is called outer pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter pathouter path,
otherwise it is an inner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner pathinner path. We take the underlying undirected graph G[A] and exhaustively
shortcut degree 2 vertices. After this, no degree 2 vertices remain. Every edge in the resulting
forest can represent at most two outer paths while possibly representing a long chain of inner
paths.

This is shown in Figure 4.4. Every edge in the graph represents exactly one outer path with the
exception of (p, h), which represents two outer paths and one inner path.

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 79

g hd f

i k m n

p

b

outer

inner

outer

outer

outer

outer

Figure 4.3.: Maximal inner and outer paths with internal vertices of degree two

d f g h

i k l

o p

b c

Figure 4.4.: The structure of the forest after contracting degree two vertices exhaustively

80 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

The number of outer paths is thus bounded to be at most the number of vertices of the forest
minus one. This would be the vertices in A1 and A≥3, in total 2((k |F |2 − k |F | + k |F |2 −
k |F | − 2)− 1) = 4k |F |2 − 4k |F | − 6.

Bergougnoux et al. introduce a new rule (2021) to limit the number of inner paths. This rule
cannot be applied effectively in general since there are too many possible paths. Instead, they
apply this rule only to paths with inclusion wise maximal inner vertices in A2.

Reduction rule 22: Covered paths

We are allowed to remove vertices of a path P = v1 vr ∈ G that is not a cycle if there
are no i, j with 1 ≤ i ≤ j ≤ r and u,w ∈ V (G) \ V (P) such that there are edges
(u, vi), (vj, w) ∈ E(G) coming from the endpoints of a non-edge (u,w) or a loop with
u = w.
Proof of safeness

Suppose that any vertex vl of P was part of the minimum solution. All cycles leading through
it must have entered the path somewhere before or at the vertex and leave it at the vertex
or further along the path.
For each edge (u, vi) entering the path by leading to a vertex vi with 1 ≤ i ≤ l, there are
direct edges to all vertices w that are at the end of edges (vj, w) leaving the path at vertex
vj with l ≤ j ≤ r. Since there is a cycle, there is now at least one path w u. However,
since the edge (u,w) is closing that path to form a cycle as well, any path w u must be
covered by at least one vertex in the solution. The same holds for loops of which the vertices
need to be part of the solution anyways.
If we removed vl from the solution, all of these paths would still be covered and thus leading
to a solution of smaller size, contradicting our assumption. �

Overview

New n n− |P | The vertices of the path are removed.
New m ≤ m− |P |+ 1 Edges adjacent to P are removed as well.
New k k The vertices are not part of a minimum solution.

Matching time O (nn)

There are exponentially many possible paths that we
would need to check, making this general version of
the rule infeasible in practice. If the Feedback Vertex
Set of the underlying undirected graph is known, we
are able to apply this rule efficiently.

Implementation

Indirectly in DeleteNonInducedEdge

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 81

v1 v2 v3 v4

u1 u2 u3

w1 w2 w3 w4

F u1 u2 u3

w1 w2 w3 w4

F

Figure 4.5.: Example of an application of Reduction rule 22

We give an example in Figure 4.5. For each predecessor of a vertex of the path v1 v4, an
edge to all successors of vertices of the vertex itself and further down the path is present. If
a vertex would have a successor of an earlier vertex of the path as a predecessor, this vertex
would have needed to be part of a loop, which would already have been removed by Reduction
rule 1.

This rule is subsumed by Reduction rule 14 in combination with Reduction rule 4 without requiring
to compute a Feedback Vertex Set beforehand.

Proof Each incoming edge of vertices of v1 vr will be removed by Reduction rule 14, since
an edge of its source to any successor of vertices further down the path exists. After this step,
the remaining edges would either be removed by the same rule or, with the first vertices having
no remaining predecessors, would be removed by Reduction rule 4 alongside the vertices of the
path itself. �

After applying Reduction rule 22, every inner path contributes to at least one non-edge or loop
(u,w) of G[F], paths contributing to a non-edge or loop (u,w) being defined in the same way
as vertices but with a path v1 vr = (v1, . . . , vr) and edges (u, vi), (vj, w) ∈ E(G) such that
1 ≥ i ≥ j ≥ r. The number of inner paths now becomes limited, since Reduction rule 19
did not introduce an edge (u,w) as a shortcut. Two of these paths may share the first or last
edge connected to the non-edge or loop they contribute to. As a result, every two of these
paths increase the number of disjoint u w paths between non-edges or loops (u,w) by one.
Therefore there are at most 2k of these inner paths contributing to (u,w). Since there are at
most |F | such vertices and |F | (|F | − 1) possible non-edges, there are at most 2k |F |2 inner
paths.

The maximum total number of paths in G[A] that contain vertices in A2 is therefore 4k |F |2 +
2k |F |2 − 4k |F | − 6.

82 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

p1 p2 p3 p4 p5

f

f′1 f′2 f′3 f′4

F

p1 p2 p3 p4 p5

f

f′1 f′2 f′3 f′4

F

Figure 4.6.: Example of an application of Reduction rule 23

4.2.6. Bounding the length of paths

Bergougnoux et al. continue by providing a bound on the length of both outer and inner paths
to bound the size of A2. They first bound the number of edges from vertices in F entering these
paths on their inner vertices.

For a vertex f ∈ F , with two successors p1, pr ∈ N→ [f] ∪ A connected by an induced path
P = p1 pr with p1 and internal vertices being balanced vertices in A2, and without an edge
(f, pi) ∈ E(G), pi ∈ internal(P), we call P an out-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segmentout-segment for f .

Bergougnoux et al. now bound the number of possible out-segments for each vertex f ∈ F .
They apply the following Reduction rule 23 on all out-segments of f . We again give the rule
of Bergougnoux et al. (Rule 7, 2021) in a generalized form, which is subsumed by Reduction
rule 14. Figure 4.6 gives an example for such a rule application.

Reduction rule 23: Non-contributing edge

Given edges (f, p1) and (f, pr), if for an induced path between their endpoints P = p1 pr
with f /∈ →N [internal(P)] for all successors f ′ ∈ N→ [internal(P)] an edge (f, f ′) exists,
we can delete (f, p1). If f = f ′, it would require (f, f ′) to be a loop.
Proof of safeness

Each cycle that (f, p1) lies on leads through both f and either pr for which an edge (f, pr)
exists or some f ′ that is reached by an edge (f, f ′). Since for all cycles through f and
p1 pr or p1 f ′ that are closed by a path pr f or f ′ f , the cycle using the edge
(f, pr) or (f, f ′) needs to be covered as well. Removing (f, p1) therefore does not change
any possible minimum solution. �

4. Kernelisation 4.2. A kernel requiring a Feedback Vertex Set as input 83

Reduction rule 23: Non-contributing edge (continued)
Overview

New n n No vertices are removed.
New m ≤ m−1 The edges is removed.
New k k Vertices are unchanged.

Matching time O (n3)
For each vertex f , δ→ [f] is at most n, with paths of length at
most n leading to pr, with each vertex on this path required to
be tested with n successors of f .

Implementation

Indirectly in DeleteNonInducedEdge

Reduction rule 23 is subsumed by Reduction rule 14.

Proof Suppose we perform our Reduction rule 14 on (f, p1). It would then perform its search,
however it would not be allowed to reach any of the successors f ′ ∈ N→ [pi], nor would it be
allowed to pass through pr since in both cases an edge (f, t) or (f, f ′) exists. �

For each f ∈ F , there are at most k |F | out-segments for f .

Proof Each out-segment of a vertex f ∈ F contributes to at least one non-edge in F or f itself.
There can be at most |F |−1 such non-edges to vertices in F that such paths would contribute to.
For each such non-edge and f itself, there can be at most k paths contributing to it, as otherwise
Reduction rule 19 would have introduced an edge or loop, respectively. �

As a result, each vertex f ∈ F can only have at most 8k |F |2+4k |F |2−8k |F |−12 neighbors
in A2. We obtain this by multiplying the number of possible path segments for f which is one
both for incoming and outgoing path segments with the number of both inner and outer path-
segments, 4k |F |2 + 2k |F |2− 4k |F | − 6 which we obtained in Section 4.2.5. Since there are
at most |F | such vertices, we obtain at most 8k |F |3+4k |F |3−8k |F |2−12 |F | vertices in A2.

4.2.7. Completing the bound

We can compute the sum of the previously collected bounds to obtain the complete size:

1. There are at most |F |2 vertices contributing to loops, see Section 4.2.1.
2. There are both at most k |F |2−k |F | vertices inA0 andA1, see Sections 4.2.2 and 4.2.3.
3. There are at most 8k |F |3 +4k |F |3− 8k |F |2− 12 |F | vertices in A2, see Section 4.2.6.
4. There are at most k |F |2 − k |F | − 2 vertices in A≥3, see Section 4.2.4.

In total, there are at most 8k |F |3+4k |F |3−5k |F |2+|F |2−3k |F |−14 |F | vertices remaining.
If we use its upper bound |F | for k, this is clearly within O

(
|F |4

)
.

84 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

4.3. New Kernel based on new data reduction rules

Following the same arguments as Bergougnoux et al. (2021), we are able to simplify and slightly
improve their kernel. We only rely on Reduction rules 4, 5, 14 and 19.

For each of the individual Reduction rules 20 to 23 used by Bergougnoux et al., we were able to
prove Reduction rule 14 subsuming it, usually even in our much more general version. In some
cases, we had removed remaining vertices with Reduction rule 4.

As a result, we are able to repeat all the claims, however instead of using a specifically computed
Feedback Vertex Set or an approximation of it, we can rely on an hypothetically minimum FVS
of our graph. All of the size bounds used after having applied the respective reduction rules still
apply for our hypothetical case – without the specific FVS being used in computation.

We first apply Reduction rules 4 and 5 exhaustively. Using the result of S. Even and Tarjan
(1975) as described in Section 2.1.3, we are able to complete the search for disjoint paths
for Reduction rule 19 on each non edge. We then apply Reduction rule 14. We repeat this
execution four times to ensure all preconditions of already applied rules are fulfilled for all of
the respective rules of Bergougnoux et al. Afterwards, we apply Reduction rule 4 a single time
to remove the vertices that now do not have adjacent edges since they were all removed by
Reduction rule 14.

On instances that do not have a fixed size Feedback Vertex Set for the underlying undirected
graph, the algorithm is not a kernel.

An obvious and easily constructed example would be the graph in Figure 4.7, constructed using
the tunnels from Section 3.9.4 on page 70. They have a fixed solution size, in this example two
with S = {v1, v2} and can be extended indefinitely. A bound on the number of vertices in the
graph for a given solution size therefore cannot exist. Furthermore, all edges in this example lie
on induced cycles as all cycles in this graph have the exact same length.

v1

v2

···

···

v1

v2

Figure 4.7.: Counterexample with an arbitrarily large graph of solution size two

85

5. Solving reduced instances

For real world instances as introduced for the PACE challenge, using the well known FPT al-
gorithm ofChen et al. (2008) and its improved versions was not feasible since there were very
large factors hidden in the O-notation. Furthermore, the instances in part required very large
solution sizes, the smallest non-trivial to solve containing fifty, the largest several thousands of
vertices. We will discuss this further in Section 6.1. These sizes would be hidden in the high
exponent in the parameter.

We further realized that instead of using regular branch and bound algorithms, reducing to
other problems such as ILP and SAT and using existing, highly optimized solvers for solving
was most efficient. We will first look into the most naive approach of effectively using a non-
polynomial reduction to Hitting Set, make it feasible by applying it iteratively, then use induced
partial orders which address the main problem of the iterative approach and finally combine
both approaches.

5.1. Adding constraints for cycles iteratively

A naive approach to solve DFVS on a graph G is a reduction to Hitting Set. Take the ver-
tices V (G) as elements used in the sets of the universe of the Hitting Set instance. For every
cycle of the graph, add a set containing all of its vertices. We can then take the resulting Hit-
ting Set instance and solve it - either using a solver specialized on Hitting Set or by reducing
Hitting Set in turn to SAT or ILP as in Algorithm 5.2. A minimum Hitting Set solution directly
translates to a minimum DFVS.

This reduction however is not polynomial as there can be exponentially many cycles inG. Similar
to our approaches used in several reduction rules in Chapter 3, a Hitting Set instance consisting
only of induced cycles would be sufficient. The number of induced cycles however can still be
exponential for a size n, especially when allowing for long cycles as in the counterexample
depicted in Figure 4.7 on the facing page.

Instead of computing and solving a complete Hitting Set instance, we can modify our approach
to become iterative, Algorithm 5.1. We keep track of a set of cycles that need to be covered
for the solution. We then create a Hitting Set instance from the current subset of cycles and
solve it. With the remaining graph after removing the solution, we search for a cycle using a BFS

86 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

after having searched for components and applying Kahn’s algorithm (Kahn, 1962), essentially
Reduction rule 4, add it to our subset of cycles and go back to recomputing the Hitting Set.
As soon as the remaining graph does not contain any cycles, the solution to our Hitting Set
instance is also a minimum DFVS of the graph.

Algorithm 5.1: Iterative Hitting Set generation
Input: A graph G
Output: Minimum DFVS S on G

1 H := ∅ // The set of cycles to hit is initially empty
2 while true do
3 S := hs(V,H) // Solve HittingSet for current cycles
4 G′ := G[V (G) \ S] // Copy the original graph and remove solution
5 kahn(G′) // Ensure only relevant vertices remain
6 if G′ is empty then
7 return S // S is already a DFVS for G
8 end
9 v := pick(V (G′)) // Chose an arbitrary vertex in G′

10 C := bfs(v, v) // Search for the shortest v v path
11 H ← H ∪ {V (C)} // Add C to the system of tracked cycles
12 end

Algorithm 5.2: Hitting Set ILP Formulation
Input: A set of vertices V , sets of cycles H

1 for each v ∈ V do
2 add variable xv ∈ {0, 1} // Represents vertices being part of the

solution
3 end
4 for each C ∈ H do
5 add constraint

∑
v∈C xv ≥ 1 // One of the vertices needs to be

selected
6 end
Objective: Minimize

∑
v∈V xv

Result: {v ∈ V | xv = 1}

This has been implemented in exact.IterativeCycleSolver.

The iterative algorithm Algorithm 5.1 always finds a minimum DFVS.

Proof Clearly, the algorithm returns a DFVS, as it only terminates if it has obtained one. We
thus need to confirm two things:

1. The algorithm terminates.

5. Solving reduced instances 5.1. Adding cycles iteratively 87

2. The returned DFVS is actually minimum.

We can directly show that the algorithm terminates. The Hitting Set, per definition, must hit
each set it is provided with, hence every current cycle in the Hitting Set set system H . Every
iteration of the algorithm identifies at least one additional cycle to add toH – otherwise hs(H)
was already a DFVS for the graph. The number of such cycles, though possibly exponential, is
finite. As such, the algorithm terminates at the latest when all cycles have been added to the
Hitting Set instance.

We can argue in the sameway that the solution must be minimum. We have demonstrated above
in Section 2.3.4 on page 29 that the Hitting Set over all cycles corresponds to a minimum
DFVS. Within each iteration, our Hitting Set instance contains only subset of all cycles of the
graph and therefore an exact subset of sets of the Hitting Set instance over these cycles. The
solution for such a subset of a Hitting Set instance can only be smaller than the solution of the
complete instance, as we could in any case use the solution of the complete instance to hit all
sets. Since we only stop if the solution is a DFVS, it implies that it has the exact same minimum
size. �

As solving in itself takes the largest amount of time, we aim for as few required iterations as
possible. We can precompute a system of short induced cycles as these are most likely relevant
for the solution. In each step, we can search for a packing of short cycles in the remaining graph
and add all these at once. We have to rely on a heuristic, especially since it is not yet known
whether packing shortest cycles is FPT on general graphs (Bentert et al., 2024). Alternatively,
we can use strategies that add even more cycles in such an iteration. A very feasible approach
was computing a cycle cover, such that each edge of the remaining graph is contained within at
least one cycle. We add all cycles up to a specific length and for the remaining edges perform
a BFS to find a cycle they lie on. We do not perform an additional search for edges on a cycle
that have been found in the second step.

This has been implemented in tools.EdgeCycleFinder.

This however is not always an improvement when compared with initially computing the set of
all cycles. In the worst case, we actually need all cycles in order for the Hitting Set solution to
be a DFVS. Figure 5.1 illustrates these issues. It depicts the progression of iteratively collecting
cycles on a graph consisting of five induced cycles, each overlapping with two others in exactly
one vertex. We alternate between the graph with vertices from the intermediate solution having
been removed and the corresponding Hitting Set instance with its solution for the next iteration.
We could continue this construction further for any uneven number of intersecting cycles. Graphs
constructed in this fashion contain exactly two additional cycles, an induced cycle in the center
and a non-induced cycle on the outside, that are not relevant for our argument.

88 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a

b

cd

e

q

s

u

w

y
z

r

t

v

x

(a) Initial cycle packing

q br

a

d c

uv

(b) Hitting Set with solution

a

b

cd

e

q

s

u

w

y
z

r

t

v

x

(c) Single not covered cycle

q br

a

e w

dx c

uv

(d) Hitting Set with solution

a

b

cd

e

q

s

u

w

y
z

r

t

v

x

(e) Previously implicitly covered

q br

a

e w

dx c

uv

s

t

(f) Hitting Set with solution

a

b

cd

e

q

s

u

w

y
z

r

t

v

x

(g) Previously implicitly covered

q br

az

y e w

dx c

uv

s

t

(h) Hitting Set with solution

a

b

cd

e

q

s

u

w

y
z

r

t

v

x

(i) Valid DFVS

Figure 5.1.: Iterative solving adding cycle packings having to add almost all cycles

5. Solving reduced instances 5.2. Linear and partial orders 89

We add maximal cycle packings for the remaining graph on every step. Apart from the initial
graph in Figure 5.1a, these however only yield the single cycle not covered by the intermediate
solution. We select a different element for the Hitting Set that results in uncovering a previously
implicitly covered cycle twice, Figure 5.1e. Only after using all these cycles as constraints, we
receive a valid dfvs.

The problem of this approach is, that the algorithm has a diminishing return. Especially during
later iterations, the solutions of the Hitting Set instances are already close to the actual solution,
but a few cycles that would have been “accidentally” covered before now come up and need
to be taken into account on every round.

Figure 5.1 demonstrated this. Most of the iterations did not raise the solution size. We mitigate
this to a degree by immediately adding several short cycles before starting the first iteration,
which would immediately have creating a feasible instance for our example.

5.2. Linear and partial orders

The solution to this main problem of the iterative approach is directly creating an instance for
the SAT or ILP solver to solve, with a result that directly translates to a valid minimum dfvs.

As a fairly simple approach, we could impose a linear order on the vertices and then track which
vertices are part of the solution. Then, for every edge, we require that either its source comes
before its target with respect to the order, its source is part of the solution or its target is part of
the solution. The minimum set of vertices required to find a solution for this problem is exactly a
minimum dfvs.1

We show an example of a linear order in Figure 5.2b that allows the minimum solution S =
{b, e, f, g} on the graph from 5.2a. Covered allowed edges are dashed, covered disallowed
edges are dotted.

The order can actually be partial, we can ignore vertices having the same rank with respect to
the order as long as they are not connected by an edge or are part of the solution. We give such
an induced partial order of minimum width, that is the least difference in ranks for the previous
example in Figure 5.2c. As previously, covered allowed edges are dashed, disallowed edges
all of which are covered are dotted.

1In this regard, DFVS is related to Kelly Width, which can also be defined with linear orders (Hunter and Kreutzer,
2008). We can take the k vertices of our DFVS and use the same linear order of vertices so that each vertex
only has these k vertices as strongly reachable vertices. The number of such vertices and thereby Kelly Width
of our graph is therefore at most k.

90 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

e f g

h i j

d

(a) Original graph with the unique minimum DFVS

h d a e i b f j c g

1 2 3 4 5 6 7 8 9 10

(b) A linear order with the minimum solution

h d a

e

i

b

f

j c

g

1 2 3

(c) A minimum width induced partial order for the minimum solution

Figure 5.2.: Example of a linear and an induced partial order

5. Solving reduced instances 5.2. Linear and partial orders 91

Encoding such an order within SAT requires a table like structure which would lead to a quadratic
number of required variables. This can be lowered to n · log (n) by assigning a binary encoded
rank to each vertex. Creating constraints to ensure this would be tedious, which is why we use
Extended SAT, Problem 6 on page 32. We give an encoding for Extended SAT in Algorithm 5.3.
Overall, the solver needs to find a solution with the least vertices selected for the solution.

Algorithm 5.3: Partial order Extended SAT formulation
Input: A graph G
Variables:

1 for each v ∈ V (G) do
2 add xv ∈ {true, false} // Represents vertices being part of the

solution
3 add yv ∈ [1, n] // Represents the rank with respect to the order
4 end
Constraints:

1 for each (s, t) ∈ E(G) do
2 add (ys < yt) ∨ xs ∨ xt // Either adhere to the order or select s or t

for the solution
3 end
Result: S = {v ∈ V | xv}

Similarly, we can create an ILP formulation, Algorithm 5.4. We create two variables for each
vertex, one representing a vertex being part of the solution using integer values {0, 1} and a
variable containing its rank with respect to the order [1, n]. Comparing vertices with respect to
the order becomes simple as we can simply subtract ranks and ask for a positive solution size.
Requiring for an edge against the order to have either source or target within the solution is less
obvious, we however can simply add the value of the source and the target being part of the
solution scaled up beyond the range allowed for the order by multiplying it with n+ 1. Again,
we optimize for as few vertices in the solution as possible.

This has been implemented in exact.LinearOrderedSolver.

Proof First, we show that the such a solution is actually a DFVS. Clearly, if none of its vertices
is included in the solution S, the source of every edge has a lower rank than the target with
respect to the order. This obviously translates to all pairs of predecessors and successors within
paths that do not lead through S. A cycle is therefore impossible, as it would need to contain
an edge that would violate this property with respect to its path.

Secondly, we need to show that given a DFVS, a solution of the formulation exists. Suppose
a set of vertices S is a minimum DFVS for a graph G. The subgraph G′ = G[V (G) \ S] is a
forest containing no cycles. We take all vertices V (G′) that have no incoming edge and give
them the rank 1 within the order. We continue by assigning rank 2 to all vertices in V (G′) that

92 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Algorithm 5.4: Partial order ILP formulation
Input: A graph G
Variables:

1 for each v ∈ V (G) do
2 add xv ∈ {0, 1} // Represents vertices being part of the solution
3 add rv ∈ [1, n] // Represents the rank with respect to the order
4 end
Constraints:

1 for each (s, t) ∈ E(G) do
2 add rs − rt + (n+ 1) · xs + (n+ 1) · xt ≥ 1 // Either adhere to the order

or select s or t for the solution
3 end
Objective: Minimize

∑
v∈V xv

Result: S = {v ∈ V | xv = 1}

have no incoming edge from all except the previously assigned vertices and continue until we
have covered all vertices. This finishes as G′ is a forest and thus does not contain cycles. Each
edge in G now either respects the order as previously constructed or either its source or target
is contained in S.

The problemwith this approach is, that the SAT and ILP solvers tend to get stuck on such instances,
compared to fairly efficient solving on instances resembling Hitting Set instances.

5.3. Hints

In effect, we are looking for an approach that combines the best of both worlds. Luckily, we are
able to combine the techniques given above even on the SAT/ILP-formulation level.

The ILP and SAT formulations above can be extended by further constraints which provide hints
to the solvers. As a result, the solver does not need to infer these rules on its own using less
efficient general rules. We provide the rules both in SAT and ILP formulations and assume that
variables represent vertices as xv, v ∈ V (G) with xv satisfied or assigned 1, respectively, to
indicate that they are part of the solution.

5. Solving reduced instances 5.3. Hints 93

5.3.1. Bi-directed edges

The most obvious improvement is to find all two-cycle D = {u, v | (u, v), (v, u) ∈ E(G)}. We
can now add a constraint that ensures that either of its vertices needs to be part of the solution.
For each two-cycle {u, v} ∈ D, we add a constraint:

For SAT
xu ∨ xv

For ILP
xu + xv ≥ 1

This constraint obviously does not alter the solution size, as it could have been directly inferred
from existing constraints.

This is especially beneficial for modern SAT solvers as they can immediately use these constraints
for unit resolution, sometimes called unit propagation, to propagate the effects of a decision
as soon as either vertex has been picked for the solution. This results in increased efficiency of
branch-and-bound algorithms (Darwiche and Pipatsrisawat, 2021).

Furthermore, we are able to remove the edge constraints from our partial order ILP formulation.
At least one vertex of this cycle is already selected, thus eliminating any possible longer cycles
that would go through the two-cycle.

5.3.2. Short cycles

We can similarly add hints for short cycles H of length greater than two. Since at least one
vertex on such a cycle needs to be included in the solution, we can add a constraint providing
that lower bound to the solver.

For each short cycle C ∈ H , we add a constraint:

For SAT ∨
v∈C

xv

For ILP ∑
v∈C

xv ≥ 1

Constraints of this form do not alter the solution size either. A further constraint cannot reduce
the possible solution size. If adding such a constraint would increase the solution size, then a
previous solution would not have included at least one vertex of the cycle and would thus not
have been a valid DFVS.

As a consequence, we are allowed to add such constraints for any set of cycles present in the
graph. If the iterative cycle solving from Section 5.1 has effectively plateaued at a solution size
and does find the necessary constraints, we are effectively able to add the constraints enforcing
an induced order from Section 5.2 to ensure all cycles are respected.

94 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

In practice, even when starting partial order based solving, we will first compute all induced
cycles of small length and start with these as hints right from the beginning.

5.3.3. Edge on multiple three-cycles

For two or more induced cycles of length three that share an edge (u, v) and with non shared
vertices w1, . . . , wi ∈ W , as in Figure 5.3, we can add a constraint that forces us to either
add u, v or all vertices inW :

For SAT

xu ∨ xv ∨
∧
w∈W

xw

For ILP

|W | · xu + |W | · xv +
∑
w∈W

xw ≥ 1

Again this obviously does not increase solution size as it directly follows from the other con-
straints.

To find such constructs, we can iterate over all edges (s, t) ∈ E(G) and simply search for
predecessors and successors of its source and target and take the cut →N [s]∩N→ [t] of these
sets.

This has been implemented in tools.ThreeCycleFinder#findLogicalThreeCycles.

wi· · ·w2

v

w1

u

Figure 5.3.: Shared edge on three-cycles

5. Solving reduced instances 5.3. Hints 95

5.3.4. Lower bounds of subgraphs

If we know the minimum solution size k′ of a subgraph H ⊆ G, we can add this minimum
solution size as a constraint for the respective vertices of the supergraph. This is easily done for
ILPs.

Using a similar approach as in Section 5.2 on page 89, we could introduce counting for Ex-
tended SAT by adding numeral variables yv ∈ {0, 1} for each v ∈ V (G) and increase its value
if the respective vertex is in the solution with∧

v∈V (G)

(xv ⇔ yv = 1)

although in our specific case, xv ⇐ yv = 1 would have been sufficient. However, if we target
SAT or via their intermediate Max SAT solvers, we generally do not benefit that much from
this sort of constraint, although we could use optimized counting strategies effectively adding a
logarithmic number of variables (Bittner et al., 2019).

A regular SAT constraint∨
H′⊆{V (H)||H′|=k′}

∧
v∈H′

xv

can be simplified to ∑
v∈V (H)

yv ≥ k′

when using extended SAT with counting.

For ILP ∑
v∈V (H)

xv ≥ k′

Proof Suppose a lower bound of k′ for V (H) was incorrect. Then there would be a solution
S for G that contains fewer vertices in H than for the minimum solution size of H . However,
then S ∪ V (H) would have to be a solution for H , since G[V (G) \ S] was a forest. This would
contradict k′ being the minimum size of a solution on H . �

This is especially beneficial for a graph of which we know the solution size, and which we can
quickly identify as a subgraph. As such, it is a generalization of the short cycles hint from Sec-
tion 5.3.2, since these can be represented as their vertex set with a lower bound of one. Another
structure that fulfills this condition is the Triforce, a set of three cycles pairwise intersecting in sin-
gle, different vertices, such as in Figure 5.4a. The Triforce may intersect other induced cycles
as in Figure 5.4b. The cycles may have any length,¸Figure 5.4c, however computing them for
cycles longer than four was ineffective.

96 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

(a) Simple example (b) Intersecting other cycle (c) Different cycle lengths

Figure 5.4.: Examples of Triforces

5.3.5. Cliques

A special case of lower bounds and a further generalization of the two-cycle hint from Sec-
tion 5.3.1 are cliques. For an l-clique, at least l−1 vertices need to be selected for the solution.

We only need to keep track of cliques that are maximal, as this still only allows for one non-
selected vertex in a sub-clique. This also applies to bi-directed edges if they are included in a
larger clique. There are solving techniques to quickly enumerate maximum cliques (Eppstein,
Löffler, et al., 2013; Eppstein and Strash, 2011) and solvers implementing them such as Quick-
Cliques2.

This is implemented in the library: algorithms.NativeMaximumCliqueEnumeration.

The observation that we are able to remove constraints for imposing the induced partial order
still holds. We can remove the bi-directed edge constraints, as long as we regard the bi-directed
edges not part of larger cliques as two-cliques and keep them as constraints.

This does not make that much sense for Max SAT, as modern solvers will usually detect cliques
as essentially encoding l − 1-constraints, which they can handle in an optimized way (Biere,
Le Berre, et al., 2014), although CaDiCal which we used indirectly via EvalMaxSAT did not
include this feature (Biere, Fazekas, et al., 2020). At the same time, they are still well suitable
for unit resolution as explained in Section 5.3.1.

5.4. Combined formulation

Taking the formulations forHitting Set, induced partial orders and hints, we obtain a formulation
that combines the different approaches in Algorithm 5.5. We extend the approach for induced
partial orders from Section 5.2.

2QuickCliques, Darren Strash, GitHub https://github.com/darrenstrash/quick-cliques

https://github.com/darrenstrash/quick-cliques

5. Solving reduced instances 5.4. Combined formulation 97

We create the induced partial order only on the directed subgraph. In order to obtain it, we
first compute the bi-directed edges D and ignore them when creating constraints for the partial
order. We also identify edges that lie on multiple three-cycles and add these with the set of their
other verticesW as T .

If constraints for cycles were previously added iteratively, we can use their set systems as lower
bounds of 1 on the respective subgraphs. Otherwise, we specifically compute short induced
cycles to be used as lower bounds. We can then enumerate the maximal cliques in the graph.
Finally, we compute Triforces for their lower bounds of 2. We supply all of these constraints as
a map (W,k′) ∈ B.

This has been implemented in solver.LinearOrderedSolver.

Such a combined formulation with its minimum solution is shown in Figure 5.5. It first shows the
hard constraints for the directed subgraph (5.5b) with an already valid partial order in 5.5c and
the undirected subgraph (5.5d) with the constraints derived from its maximum cliques, 5.5e.

Algorithm 5.5: Combined ILP formulation
Input: A graph G, its bi-directed edges D, shared three-cycle edges T and lower

bounds for subgraphs B
Variables:

1 for each v ∈ V (G) do
2 add xv ∈ {0, 1} // Represents variables being part of the solution
3 add rv ∈ [1, n] // Represents the rank with respect to the order
4 end
Constraints:

1 for each (s, t) ∈ E(G) do
2 if {s, t} /∈ D then
3 add rs − rt + (n+ 1) · xs + (n+ 1) · xt ≥ 1 // Either adhere to the

order or select s or t for the solution
4 end
5 end
6 for each (u, v,W) ∈ T do
7 add |W | · xu + |W | · xv +

∑
w∈W xw ≥ |W | // Select u, v or all in W

8 end
9 for each (W,k′) ∈ B do

10 add
∑

w∈W xw ≥ k′ // Apply precomputed lower bounds on subgraphs
11 end

Objective: Minimize
∑

v∈V xv
Result: {v ∈ V | xv = 1}

98 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

e f g

h i j

d

(a) Original graph with the unique minimum DFVS

a b c

e f

h j

d

(b) Directed subgraph

h d a e

b cf j

1 2 3 4

(c) Partial order on directed subgraph

a b c

e f g

i j

2
2

223

(d) Undirected subgraph with maximum cliques

a b min 1

b e i min 2

f i min 1

c g min 1

g c min 1

(e) Constraints derived from cliques

b c

f

j

a

e

h

d

(f) Cycle and edge on multiple three-cycles

c f b and j min 1

a e h d min 1

(g) Hints derived from cycle and cycles of edge

a b c

e f g

h i j

d

2 2 2
(h) Subgraph lower bounds, derived from Triforces

a b d e h min 2

b c f i min 2

c f g j min 2

(i) Constraints for lower bounds of subgraphs

Figure 5.5.: Structure of constraints of the combined formulation

5. Solving reduced instances 5.5. Reduction to Vertex Cover 99

5.5. Reduction to Vertex Cover

For graphs that predominantly consist of bi-directed edges, as did some of the PACE challenge,
we are able to use a different approach. We perform a reduction to Vertex Cover with the goal
of using one of the efficient existing solvers for this problem. We expand upon the idea of the
non-polynomial Hitting Set to Vertex Cover reduction from Section 2.3.4.

If the graph consist only of bi-directed edges, we can immediately take its underlying undirected
graph as a Vertex Cover instance. We have effectively undone a Vertex Cover to DFVS re-
duction as in Figure 2.7. The minimum Vertex Cover is also a minimum DFVS on the original
graph.

This has been implemented in exact.VertexCoverSolver.

5.5.1. Replacing cycles with Hitting Set gadgets

If some directed edges remain, we can perform a DFVS to Hitting Set to Vertex Cover reduc-
tion. Neither of the reductions is polynomial, however both may be suitable on instances with
a low directed edge density. As we only need to take care of induced cycles, we can treat the
bi-directed edges independent from the directed ones and directly add them to our set system
and thus as edges for our Vertex Cover instance.

We then need to enumerate all other induced cycles. We can perform a recursive DFS on all
remaining vertices without continuing branches on vertices that have an edge leading back to
a member of the current path, similar to our reduction rule in Section 3.7.

For each cycle of length l in our Hitting Set instance, we create a Vertex Cover gadget, an
l-clique with each vertex of the cycle connected to a different vertex of the clique. Examples for
individual cycles are shown in Figures 5.6a and 5.6b.

This has been implemented in reductions.AnyHittingSet.

5.5.2. Optimized gadgets

In a few cases, we are able to reduce the number of needed gadgets. If the directed graph con-
tains two or more cycles share an arbitrary long path segment s t and split for individual path
segments (t, w1, s), . . . , (t, wi, s) we can use a single gadget, but instead connect one vertex

100 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

2

1

3 2

1

3

(a) Simple gadget for a three-cycle

1 2

3

45

6

1 2

3

45

6

(b) Simple gadget for a six-cycle

s 2

3

4t

w1

w2

w’

s 2

3

4t

w1

w2

(c) Gadget for two mostly intersecting six-cycles

1 2

3

45

1 2

3

45

(d) Gadget for cycles with longer non-shared segments

Figure 5.6.: Vertex Cover gadgets

5. Solving reduced instances 5.5. Reduction to Vertex Cover 101

w′ of the clique to all w1, . . . , wi. Figure 5.6c demonstrates this with w1, w2 being connected to
w′. If the solution was exclusively inside of the clique, we push any vertex other than w′ out to
be part of the solution.

This variant can save a large number of vertices. As a result, we would compute it before the
general version of the rule and delete the respective edges.

This has been implemented in reductions.ThreeHittingSet.

On the graph in Figure 5.7a we would create two cliques for the two three cycles on the left
side as depicted in Figure 5.7b. If we used the variation, we could save half of these additional
vertices and nearly half the edges as shown in Figure 5.7c. The gadget for the four-cycle remains
untouched by this variation as that cycle is not adjacent to other longer cycles.

A vertex outside a minimum solution can never be adjacent to l cliques that have all of their
internal vertices inside of the solution as long as it is sharing at most l − 1 vertices inside of
cliques with other vertices.

Proof Suppose a minimum solution did not select such a vertex v. In this case, we could create
an improved solution by including v and push all of its adjacent neighbors from cliques that
previously had been in the solution to neighbors v shared a vertex in the cliques with.

Since our precondition ensured exactly this, there are at most l− 1 such vertices. As our vertex
was adjacent to less than l − 1 other vertices, we immediately obtain a smaller solution, a
contradiction to our initial assumption. �

In principle, we could further extend this approach to allow for several different path constella-
tions. We could introduce several non-shared segments that would each result in a vertex in the
clique connected to all such vertices.

We could furthermore allow for the paths to split away for more than one vertex. In this case, we
would need to have one vertex in the clique representing each possible permutation of vertices
of the split off paths to be selected for the solution. As such, this quickly becomes infeasible if
several paths of length greater than zero are inspected.

An example is shown in Figure 5.6d with a non shared segments with one and two vertices,
respectively. Two paths with two internal vertices each would have to be represented with four
clique members.

Overall, for all such modifications, we need to ensure that all paths share a single vertex towards
which we could push our vertex for a solution.

102 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

a b c

e f g

h i j

d

(a) Mostly undirected instance

a b c

e f g

h i j

d

(b) Converted with three regular gadgets

a b c

e
f

g

h i j

d

(c) Converted with an optimized and one regular gadget

Figure 5.7.: Introducing gadgets to instances

5. Solving reduced instances 5.6. Branch and bound 103

a b c

e f g

h i j

d

(a) Initial graph and the vertex we branch on

a c

e f g

h i j

d

S = {b}
(b) Branch after including vertex

a c

e f g

h i j

d

(c) Other branch after shortcutting vertex

c

f g

h j

d

S = {a, e, i}
(d) Other branch after removing loops

Figure 5.8.: Branching example

5.6. Branch and bound

The classical approach to solving would be a branching algorithm that in a way tries to solve
the problem with brute force, by trying out all possible combinations. In each branching step,
such an algorithm takes a binary decision and then evaluates both branches that originate from
it, usually applying methods such that it does not need to evaluate all branches towards their
end.

In case of DFVS, the obvious choice would be a vertex v included or excluded in the solution.
If v is included in the solution, we can effectively remove the vertex from the graph and simply
increase the solution size of this branch. If it is excluded, we directly shortcut it, since we know
it will not be part of the solution.

104 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

We could branch for example on high-degree vertices or vertices on short cycles being part of
the solution. It then keeps track of the best achieved solutions and tries to quickly reject branches
that are obviously worse than already established bounds.

In the example in Figure 5.8, we select the high degree vertex b, 5.8a and then continue with
a branch where it is directly included in the solution (5.8b) and one where we shortcut (5.8c).
In this branch the cycle (b, c, f) was shortcut to a single bi-directed edge {c, f}. Existing bi-
directed edges were shortcut to loops on a, e and i which we can also add to the solution
(5.8d), effectively applying Reduction rule 1.

An approach that is interesting in this regard is to compute a non-optimum solution using some
heuristic first, prioritize these vertices and try to push the lower bound of a possible solution for
this branch over the already established possible solution size.

To support such an approach, we need to be able to quickly determine a good upper- and lower
bound of such a partial solution. This involves a trade off of a close result and more computation
required to achieve such a result. We furthermore need efficient data structures to be able to
backtrack quickly.

When the remaining instance is small enough, we can alternatively use other solving approaches
detailed above or skip more expensive data reduction rules.

The branch and bound approach did not prove effective compared to reducing problem in-
stances to problems for which highly optimized solvers already exist. We however briefly ex-
plain how such bounds could be obtained and how the approach could be extended with data
reduction rules.

5.6.1. Upper bounds

Any valid DFVS on a graph is a safe upper bound. The following approaches generally provide
non-optimal but still valid solutions for DFVS. Furthermore, as soon as we are able to find a lower
bound of the same size, such a valid DFVS immediately becomes the solution to our minimization
problem.

A very fast approach is to greedily pick vertices for the solution based on a heuristic, applying
data reduction rules after each pick. An obvious and very fast to compute choice are high
degree vertices. As we are on directed graphs, vertices however have a separate in-degree
→δ [v] and out-degree δ→ [v]. A naive approach would be to simply add them, →δ [v]+ δ→ [v].
Generally, wewant to pick vertices that contribute to as many cycles at the same time as possible.
As a result, we achieved best results when weighing vertices that both have a high in- and out-
degree higher. Using min (→δ [v] , δ→ [v]), we ensured that a vertex with a high degree in only
one of the directions would not be picked. Directly multiplying the degrees as →δ [v] · δ→ [v]

5. Solving reduced instances 5.6. Branch and bound 105

had an even better effect, but does not account as much for imbalanced vertices anymore. We
observed the best results with →δ [v] · δ→ [v] · 2− (→δ [v] · δ→ [v]), which still rewards vertices
with a lot of possible cycles while again punishing imbalanced vertices.

This has been implemented in heuristic.DegreeHeuristic.

An improvement at the expense of more computation time was to solve the LP relaxation of the
combined formulation from Section 5.4 and then greedily pick the vertex with the highest weight.
It would also be possible to directly pick several vertices at the same time, either a fixed quantity
on every iteration or using vertices within certain bounds.

This has been implemented in heuristic.LpBasedHeuristic.

An even more expensive and quite different approach that however achieved lower upper
bounds was comparable to the iterative Hitting Set approach used in Section 5.1. We re-
cursively compute a Hitting Set on an arbitrary set of cycles, greedily pick these vertices for
the solution and, after applying reduction rules, recursively repeat this on the remaining graph.

This has been implemented in heuristic.IlpBasedHeuristic.

Computing it on every level did not make sense, however using it on the first run usually provided
a fairly close bound. As the Hitting Set instance on the first step might already be impossible
to solve, using a timeout and falling back to other upper bounds is beneficial.

All of these previous approaches might have greedily picked a non suitable vertex early on,
for example a vertex in the center of a very dense area where all its neighbors needed to be
included in the solution for other reasons. An approach that aims to mitigate this problem is to
take an existing solution and to iteratively push vertices out of it. It was used by Bafna et al.
(1999) for their 2-approximation of Feedback Vertex Set. We however use any existing valid
though not minimum DFVS S on the graph and remove a vertex v, such that S ′ = S \ (v). If S ′

is still a DFVS on the graph, we keep it and continue with the next vertex until we have visited
all vertices. Such a refined solution is now ensured to be minimal, albeit not minimum. We used
the same way of weighting the vertices as for the greedy heuristic above, but started pushing
out vertices with a low value first.

This has been implemented in tools.DegreeBasedSolutionRefiner.

This approach can be used as a heuristic to compute the solution in itself. It had roughly the
same speed as greedily picking vertices while providing much smaller solutions.

106 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

This has been implemented in heuristic.GreedyRemoveHeuristic.

5.6.2. Lower bounds

Lower bounds are especially relevant for branch and bound algorithms. As soon as we reach a
lower bound higher than an already found solution in our previous branching attempts, we can
stop continuing on this branch. However they have less uses outside of branching algorithms
when compared with upper bounds. To compute such lower bounds, we can in several ways
build upon concepts that we have used for hints in Section 5.3.

Any minimum solution for a subgraph is automatically a lower bound on its vertices. An example
would be the Vertex Cover on the undirected subgraph which would imply a lower bound
for the complete graph. Similarly, we could compute the sum of minimum solutions of disjoint
subgraphs.

As such, we can try to pack disjoint structures of which we know a lower bound, Section 5.3.4.
Since they each impose a lower bound on a separate part of the graph, we obtain a lower
bound for the whole graph. Cliques generally provide the best of such lower bounds while a
good packing of Triforces allows for a lower bound of two on subgraphs where we could only
pack one cycle. If we have accounted for all Triforces, we can still attempt to pack disjoint cycles
in the remaining graph.

This has been implemented in lowerbound.TriforceDisjointCyclesLowerBound.

The LP relaxation of any of the ILPs, especially Section 5.4, again provides a lower bound.
We can collect both the aforementioned Triforces and cycles. The lower bounds we provide to
the solver however do not need to be disjoint, so we could provide more Triforces and could
also use a cycle cover such that for every edge at least one cycle containing it is supplied to
the solver. We can simply sum all the weights assigned to vertices, ceil them to the next integer
number and obtain our lower bound. This generally has a higher computation cost than the
previous approach.

This has been implemented in lowerbound.LpLowerBound.

Again, we are allowed to use the minimum solution of any subgraph as the minimum solution
for such a subgraph, so we would also be allowed to split the graph into several parts, compute
exact solutions on these subgraphs and then take the sum of these exact solutions as the lower

5. Solving reduced instances 5.6. Branch and bound 107

bound. This would only make sense when combined with some strategy that reuses such com-
putations and was not implemented. The results of this computation could also be passed to the
LP.

Overall, all of these lower bounds were unsuccessful at providing high lower bounds, thus mak-
ing branch and bound based solving infeasible.

5.6.3. Branch and reduce

After each decision made, we could also apply data reduction rules to reduce the size of our
instance at an ideally fairly low computation cost. This modification to the ordinary branch and
bound approach is called branch and reduce (Plachetta and Grinten, 2021). It has been partly
successful for Vertex Cover (Hespe et al., 2020).

This has been implemented in exact.ManualBranchingSolver.

Let us look at an example for a branch and reduce approach in Figure 5.9. Instead of looking
at a specific graph as an example, we merely overlook the execution of the algorithm as a
branching tree on a fictive example that covers the most relevant cases, though not all edge
cases. We furthermore take an algorithm that can decide whether to include or exclude a
vertex on an individual basis.

Initially, we apply data reduction rules, 5.9a. We then compute bounds using lower bounds
from Section 5.6.2 and upper bounds, Section 5.6.1 in 5.9b. From now on, the labels represent
the number of vertices we have already picked for the solution, in this case four from 5.9a, the
minimum that this branch can at best achieve, currently three and the maximum number of
vertices such that this branch does not perform worse than what we already have a solution for.
Since our heuristic found a solution of size 14, this limit is at 10. Since we are at the root, this
applies for the complete remaining instance.

We then make our first decision. Based on some heuristics, we decided on a vertex. For our
first branch, we excluded it, adding three vertices in 5.9c. The bounds, 5.9d, obviously shift by
three in this case, as three more vertices are definitely in the solution.

We continue with data reduction, 5.9e which in this case did not add any vertices to the solution
but may have successfully removed edges. The lower bound 5.9f computed afterwards was
increased by two.

108 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Input

Data reduction

Compute Bounds

Pick/exclude

Data reduction

Lower Bound

Pick/exclude

Data reduction

Lower Bound

Pick/exclude

Data reduction

Lower Bound

0 + [?, ?]

(current solution size + [remaining lower, upper bound])

add 4(a)

4 + [?, ?]

add 3(c)

7 + [0, 7](d)

add none(e)

7 + [0, 7]

add 1

8 + [1, 6]

add 6

14 + [0, 0](g)

X

add 2

9 + [4, 5](h)

add 2

11 + [2, 3]

11 + [2, 3]

add 1(i)

12 + [1, 2]

add none

12 + [1, 2]

12 + [2, 2](j)

X

add 2

13 + [0, 1]

DFVS(k)

add 1

5 + [5, 8]

add 2

7 + [3, 6]

add 1

8 + [2, 5]

add 3

11 + [0, 2]

DFVS(m)

add none(n)

7 + [3, 4]

add none

7 + [3, 4]

7 + [4, 4](o)

X

7 + [3, 6] 7 + [3, 4]7 + [2, 7](f) 7 + [6, 7]

4 + [3, 10](b) 4 + [6, 9] (l)

Figure 5.9.: Fictive branch and reduce tree

5. Solving reduced instances 5.7. Combining the approaches 109

After repeating this, data reduction itself added eight vertices directly into the solution. We do
not even need to compute the lower bound after 5.9g since we already know that our current
minimum solution size of 14 in this branch will not be better than the solution already found. We
therefore abandon this branch and return to our previous decision.

Instead, we attempt to push the vertex out of the solution first. In this case, this directly adds four
vertices to the solution. However, we know a closer lower bound (5.9h) for this branch, as it
can be at most better by one vertex as all these vertices could have also been selected in the
other branch to obtain a solution.

Our decision to add a vertex (5.9i) draws our branch to the same fate as the previous one after
we have computed a new lower bound of two remaining vertices, 5.9j. In this case, our bounds
do not need to change. These two vertices are exactly the two vertices immediately added in the
second branch which happen to be the remaining vertices for a valid DFVS in 5.9k. In theory,
we could only check for remaining cycles, although we probably would have computed data
reduction rules in practice as these would quickly remove all vertices from cycle free graphs,
making the test for a valid DFVS existing an emptiness check.

With this newly found solution, we go back within our branch to the previous not completely
evaluated decision, in this case when we picked a vertex in 5.9c. Our bounds need to be
updated again in 5.9l, since we found a better solution. We do not need to search for a worse
solution than the current 13. As previously, our lower bound gets raised as well, as a smaller
solution on this branch would have been reproducible on the other branch by selecting the same
vertices.

We continue by finding an even better DFVS in this new branch, 5.9m, and fail to improve it
when undoing the decision. In this example, excluding the vertex from the solution did not lead
to the direct inclusion of other vertices, the lower bound however turned out to be too high to
be able to improve the current solution any more, 5.9o.

We did not cover data reduction rules adding more vertices than even the maximum. We
could alter our reduction rules to also keep track of the bounds as well, employ k-based data
reduction rules and immediately stop when exceeding the bounds. In this example, we have
seen the importance of propagating bound information upwards, since the bounds of closely
related branches are quite often closely related to each other.

5.7. Combining the approaches

Our solving approach is summarized in Figure 5.10. We target 30 minutes as the available
time for the PACE Challenge.

110 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Read input

3 Data reduction

5.1 Iterative cycles5.4 Combined formula

5.5 Vertex Cover

TimeoutTimeout

15 min 30 min

15 min Solution

More uni-directedMore bi-directed

Already solved

Figure 5.10.: Overview of solving

The first step in solving a given DFVS instance was always to apply the data reduction rules
from Chapter 3. We were able to demonstrate in Section 4.3 that these also come with theoreti-
cal guarantees with regard to the size of the underlying Feedback Vertex Set. During reduction,
we might have split our problem instances into multiple parts which we then solve individually.

We continue with the most effective solving approaches explored in Sections 5.1, 5.4 and 5.5
which are all based on reductions to other problems for which efficient solvers exist. We use
timeouts to switch from our combined formulation to Vertex Cover based solving after having
spent half of the available time.

We then reconstruct the minimum DFVS from the solution of these problems and apply changes
made during reduction in their reverse order.

This has been implemented in exact.CombinedDfvsSolver.

111

6. Practical Evaluation

We evaluate the practical implementation of the reduction rules and solving techniques intro-
duced before. In some cases, we already mention comparisons with DAGer, the winning solver
of PACE 2022, which is explained in Section 6.4.1.

6.1. Dataset overview

The evaluation is performed on the dataset that was used in the PACE challenge.

There were four subsets, each contains one hundred instances:

• Public exact instances
• Private exact instances
• Public heuristic instances
• Private heuristic instances

The public instances were available throughout the challenge, the scoring was performed on
the instances of the respective track. For the exact track, the results on both public and private
instances were combined, for the heuristic track, scoring was performed only on the private
instances.

The exact track did not contain instances from real-world datasets (Großmann et al., 2022).
Instead, its instances were generated using a variety of methods (Funke et al., 2018).

• Erdős-Rényi Graphs
Given n, m, these are selected from a uniform distribution over all possible graphs of n
vertices and m edges.

• Random Geometric Graphs
While there are defined for higher dimensions as well, only d ∈ {2, 3} were used. For
d = 2, all vertices are placed on a square. This square is then split into overlapping chunks
in which vertices are connected with their neighbors. For d = 3 the same approach is
applied in three dimensions on a cube.

112 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

• Random Hyperbolic Graphs
Vertices are placed on a disk in the hyperbolic plane. Edges are created between edges
with a similar degree using a radius based approach similar to the geometric graphs.

• Random Delaunay Graphs
These graphs are generated from random points in d ∈ {2, 3}-dimensional space which
are then connected such that its faces become smallest possible triangles, or tetrahedrons
respectively.

• Barabási-Albert Graph Model
Vertices are connected to vertices that are already more closely connected, which is called
preferential attachment. As this model by default creates acyclic graphs, Großmann et
al. added additional random edges to create cycles.

The organizers preselected instances that were not trivial to solve. All instances were provided
in the METIS format1 which is based on adjacency lists.

We mostly consider them from a practical point of view. Our focus was on the exact track, so
we will only consider the exact instances unless otherwise noted.

The dataset can be split into five main categories. Most contained additional edges not on
cycles that as such were removed by the most basic reduction rules. The instances were therefore
categorized after reduction rules were applied.

• Small instances
Around half of the instances are relatively small, the others are larger and more complex.
Most of the small instances were already solved by data reduction alone, or in a way
that only very few vertices remained. Therefore, it did not make sense to analyze these
further.

• Vertex Cover instances
Sometimes called undirected instances, all edges within these are bi-directed.

• Mostly undirected instances
The largest part of edges is structured as in the previous vertex cover instance case. How-
ever, a small directed subgraph remains.

• Directed instances
These instances mostly consist of very long cycles with bi-directed edges rarely occurring

• Huge instances
There are three instances that resemble the previous three categories but are much larger.
We will exclude them and two additional instances that were not solved by any solver for
example when discussing solution sizes of instances.

1METIS GRAPH Files, John Burkardt, Department of Scientific Computing, Florida State University
https://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html

https://people.sc.fsu.edu/~jburkardt/data/metis_graph/metis_graph.html

6. Practical Evaluation 6.2. Evaluation of reduction rules 113

The definition of a Vertex Cover instance is not a difficult choice. To differentiate between di-
rected and mostly undirected instances, we draw a line at the absolute count of edges containing
a majority of bi-directed or uni-directed edges, counting bi-directed edges as two vertices. We
give a detailed overview on the number of vertices, edges and solution sizes and the resulting
classification in Table A.1 on page 140.

6.2. Evaluation of reduction rules

Weexamine the efficiency of the data reduction rules at the point where they are usually applied.
A very general reduction rule with a large running time requirement will therefore be applied
after its faster special case rules have been applied exhaustively. We have implemented the
reduction rules in Figure 6.1.

For each reduction rule, we will have applied all previous data reduction rules exhaustively. We
will then apply this reduction rule and previous rules until both the current and previous rules
have been applied exhaustively. A reduction rule that does not remove a lot of vertices itself, but
allows other rules to be applied further a lot will be attributed all improvements of the previous
rules.

In Figure 6.2a, we display how many vertices of the solution are directly added by our reduction
rules. This mostly corresponds with the removed vertices in Figure 6.2b, as every vertex added
to the solution is also removed from the graph. As a very first step, we performed a single
application of Reduction rule 4, which did not add vertices for the solution. About half of the
instances were directly solved by our reduction rules. Only on instances where these did not
already solve large parts of the instance, our more complex rules were able to make small
contributions. We can immediately see the effect of our edge based rules in Figure 6.2c.

The time finished in Figure 6.3 indicates the time after which all rules including the current one
had been applied exhaustively for the first time. The initial removal of vertices with Reduction
rule 4 was expensive on instances with very large numbers of vertices, although it otherwise
completed very quickly. We were able to find only a very small number of small crowns for
our partial implementation of Reduction rule 10 after having applied all other reduction rules.
However, we decided to keep them since they did not take long to compute either and might be
helpful on instances suitably structured.

The data reduction rules completed on all instances, both exact and heuristic within reasonable
time. We give detailed results for running times on individual instances as well as graph and
solution sizes before and after reduction in Table A.1.

114 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Reduction rule 10 – Crowns

Reduction rule 16 – Pick vertices weakly dominating bi-directed edge

Reduction rule 15 – Remove edges while tracking cycles in predecessors

Reduction rule 8 – Contract neighbors of degree three vertices

Reduction rule 7 – Contract isolated paths of length three

Reduction rule 14 – Remove if there is always a shorter cycle

Reduction rule 11 – Strongly connected components

Reduction rule 6 – Dominating bi-directed edge

Reduction rules 1, 4, 5 and 12 – Recursive implementation (Section 3.10)

Reduction rule 3 – Trivial rules

Reduction rule 4 – No predecessor or successor

Completely reduced

Figure 6.1.: Implemented reduction rules

6. Practical Evaluation 6.2. Evaluation of reduction rules 115

0 10 20 30 40 50 60 70 80 90
0

20%

40%

60%

80%

100%

Instance with known solution size

Pa
rt
of

so
lu
tio

n
fo
un

d

(a) Part of vertices directly added to the solution

0 10 20 30 40 50 60 70 80 90 100
0

20%

40%

60%

80%

100%

Instances

Re
m
ov

ed
ve
rti
ce

s

(b) Vertices removed

0 10 20 30 40 50 60 70 80 90 100
0

20%

40%

60%

80%

100%

Instances

Re
m
ov

ed
ed

ge
s

(c) Edges removed

Figure 6.2.: Effects of applying reduction rules

116 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

0 10 20 30 40 50 60 70 80 90 100
1ms

10ms

100ms

1s

10s

Instances

Tim
e
to
ok

Figure 6.3.: Reduction time

6.3. Evaluation of solving techniques

We compare the different solving techniques we implemented with each other. An overview is
shown in Figure 6.4. The more instances solved, the better.

We can observe the following:

1. The iterative Hitting Set solved with ILP is fairly slow, but solved more instances when
compared with induced partial order ILPs in the long run.

2. Vertex Cover based solving either completed quickly and generally faster than other
solvers within two minutes or not at all.

3. Our combined solver that we submitted to PACE is outperformed by solving iterative Hit-
ting Set with Max SAT, using EvalMaxSAT internally.

4. A few instances are already solved by reduction rules and we include the completion of
reduction rules on the instances as a hint.

This however hides that some techniques not completing on individual instances that others can
solve. Table 6.1 illustrates this. It differentiates for the combinations of solvers that were able
to solve an instance in general and then counts how often the respective solver achieved the

6. Practical Evaluation 6.3. Evaluation of solving techniques 117

Iterative Hitting Set Max SAT

0 10 20 30 40 50 60 70 80 90 100
0

5min

10min

15min

20min

25min

30min
Our Combined Solver

Partial order ILP

Vertex Cover

Iterative Hitting Set ILP

Number of solved instances

Tim
e
ta
ke
n

(a) Linear view

0 10 20 30 40 50 60 70 80 90 100
1ms

10ms

100ms

1s

10s

100s

16.6min

Partial order ILP

Vertex Cover

Iterative Hitting Set ILP

Iterative Hitting Set Max SAT

Our Combined Solver
Reduction rules time

Reduction rules only

Number of solved instances

Tim
e
ta
ke
n

(b) Logarithmic view

Figure 6.4.: Comparison of our own solving approaches

118 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Iterative Hitting Set Partial order

Count ILP Max SAT Vertex Cover ILP

41 20 1 12 8
7 7
4 4
3 3 0
3 0 3
3 3
2 0 2 0
2 2 0
1 0 1 0
1† 1
1††

27R

Solved 77 86 75 74
† This instance was not solved by DAGer
†† This instance was only solved by DAGer
R Completely solved by reduction rules

Table 6.1.: Fastest completion of solving techniques on instances that were solved

best result. For example on the two instances that were solvable by iterative Hitting Set with
ILP, iterative Hitting Set with Max SAT and induced partial order ILP reductions, Max SAT was
always faster than the other two.

Detailed results on the fifty larger instances can be found in Table A.2 on page 141. If we group
the instances according to our classification from Section 6.1, as in Table A.4 on page 143, we
are able to observe some patterns.

1. The iterative Hitting Set ILP is our only solver effectively solving directed instances, in
two cases taking about the same amount of time as DAGer even being able to solve an
instance that DAGer does not return a result on.

2. The Vertex Cover solver unsurprisingly performs well on Vertex Cover instances. How-
ever, the Max SAT solver is able to complete on instances that the Vertex Cover solver
does not solve.

3. The same appears for mostly directed instances, however in the reverse direction. Here,
the Vertex Cover usually completes faster as well, if it returns a result at all.

4. The induced partial order ILP formulation that we used for our PACE submission is outper-
formed by the iterative Max SAT formulation on almost all instances In contrast to Max
SAT based solving, it is not able to solve any additional instances.

6. Practical Evaluation 6.4. Comparison with other PACE submissions 119

Table 6.2.: Overview of PACE 2022 exact solver submissions solving 150 instances
Name, Paper Approach Solved

1 DAGer
Kiesel and Schidler, 2023 Using a dynamic MaxSAT solver 185

2 Our submission†

Bergenthal et al., 2022

Depending on instance: Iterative reduction to ILP,
direct reduction to ILP or partially iterative reduc-
tion to Vertex Cover

165

3 Mount Doom†

Angrick et al., 2023 Iterative reduction to Vertex Cover 152

4 G2OAT
Červený et al., 2022 Branch and reduce 151

D DVFS
Meiburg, 2022

If possible direct reduction to Hitting Set, using
a dynamic ILP solver 175

D DiVerSeS Depending on instance: Branch and reduce or
iterative reduction to Hitting Set

160

D Disqualified because of errors but resubmitted † Student submission

6.4. Comparison with other PACE submissions

We briefly discuss the approaches employed by other solvers for the PACE 2022 exact track.
For an overview of the solving approaches, see Table 6.2. This overview is insofar interesting,
as the teams used a large variety and a lot of different approaches in their submissions. In
most cases, we attempted to follow similar approaches and already gave an overview on them
in Chapters 3 and 5. We only considered solvers that solved 150 instances in total on public
and private instances as determined by Großmann et al. (2022).

We compare their running time on instances in Figure 6.5. While only the count of solved
instances mattered for the PACE challenge apart from ties, taking less time is preferable. .

In these comparisons, our solvers had a slight advantage since we took all measures within
our application, eliminating our typical overhead of starting the Java Virtual Machine while
imposing a minor delay by calling the other solvers from within our application. The results
would, however closely resemble typical scenarios where DFVS needs to be solved within some
Java based environment.

This has been implemented in performance.PerformanceMeasurement.

120 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

0 10 20 30 40 50 60 70 80 90 100
0

5min

10min

15min

20min

25min

30min
Our Combined Solver

DAGer

G2OAT

Number of solved instances

Tim
e
ta
ke
n

(a) Linear view

0 10 20 30 40 50 60 70 80 90 100
1ms

10ms

100ms

1s

10s

100s

16.6min

Our Combined Solver

DAGer
G2OAT

Number of solved instances

Tim
e
ta
ke
n

(b) Logarithmic view

Figure 6.5.: Comparison of solvers

6. Practical Evaluation 6.4. Comparison with other PACE submissions 121

6.4.1. DAGer

The winning solver of PACE 2022 was DAGer, created by Kiesel and Schidler (2022, 2023)2.

It used the EvalMaxSAT solver for solving Max SAT, Problem 7. They added cycle constraints
dynamically during solving and thereby followed an iterative approach similar to Section 5.1,
however without having to call the internal solver again on each run. It could thus retain its
learned constraints for CDCL.

They only applied the basic and well known reduction rules and immediately proceeded with
interactive solving.

6.4.2. Mount Doom

The idea behind the solver Mount Doom3 by Angrick et al. (2022) was that DFVS is very similar
to Vertex Cover, Problem 2 on instances that mostly contain bi-directed edges (Angrick et al.,
2023). They used an iterative reduction in a similar way as we did in Section 5.1, however
instead of solving the Hitting Set instances via ILPs as in our case, they applied the same
reduction to Vertex Cover that we described in Section 5.5.

Internally, they used WeGotYouCovered to solve Vertex Cover on the iteratively expanded
undirected subgraphs while applying data reduction rules after each addition of gadgets.

6.4.3. G2OAT

G2OAT4 was the only of the more successful solvers directly implementing a branching algorithm
as explained in Section 5.6 (Červený et al., 2022). They heavily rely on data reduction rules.
For preprocessing, they would also use more expensive rules and turn them off during branching.

As a lower bound, they first greedily remove maximal bi-directed cliques, then compute a lower
bound for Vertex Cover on the undirected subgraph using Linear Programming. They then
remove all vertices incident to bi-directed edges, apply reduction rules on the remaining graph
which is a subgraph of the directed subgraph. When only directed edges remain, they pack
disjoint cycles.

2Dagger, André Schidler, GitHub https://github.com/ASchidler/dfvs
3Mount Doom, Ben Bals, GitHub https://github.com/BenBals/mount-doom/tree/exact
4G2OAT, Prague Technical University GitLab

https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact/

https://github.com/ASchidler/dfvs
https://github.com/BenBals/mount-doom/tree/exact
https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact/

122 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

6.4.4. DVFS

DVFS5 relied entirely on a Hitting Set formulation as we described in Section 5.1 (Meiburg,
2022). They only applied the most basic Reduction rules 4, 5 and 11 and quickly proceeded
to finding an initial set of induced cycles. Whenever possible, they would try to enumerate all
induced cycles. The set of cycles would then be used as a Hitting Set and, if not all cycles
were enumerated, interactively increased using SCIP as an interactive ILP solver.

6.4.5. DiVerSeS

DiVerSeS6 decided on using branch-and-reduce based solving or iterative Hitting Set based
solving using FindMinHS7 (Swat, 2022b) depending on the instance. Its heuristic variant (Swat,
2022a) was the winner on the heuristic track.

6.5. Creating an improved solver

Before the results of the PACE challenge were published, we were not aware of EvalMaxSAT,
although we evaluated using SAT based solving using an SMT solver. Using the simple reduction
explained in Section 2.3.5 on page 31, we were able to directly use it within our iterative
solver replacing the ILP solver. We already incorporated this alternative solving approach in
our observations in Section 6.3.

Consequently, we are able to build an improved solver. We keep the iterative ILP for directed
instances, where it had vastly better performance than Max SAT. Otherwise we first perform
Vertex Cover based solving before we resort to iterative Max SAT, as it proved more stable and
there would be hope for it completing on instances that are structurally unsolvable for the Vertex
Cover solver. We use a slightly larger time limit on Vertex Cover instances. Furthermore, we
improved our Vertex Cover based solving approach to also reduce arbitrarily large cycles, even
though this was never necessary on our dataset. The updated approach is shown in Figure 6.6.

We can observe the result in Figure 6.7. When comparing this with our submitted solver, we
solve nine additional instances. Our new solver is still outperformed by DAGer on almost all
instances. We however were able to close the gap on a couple of instances and were even
able to finish computing on an instance that DAGer did not solve on our setup within the time
limit.

5DVFS_PACE2022, Timeroot, GitHub https://github.com/Timeroot/DVFS_PACE2022/
6pace-2022, Sylwester Swat , GitHub https://github.com/swacisko/pace-2022
7David Stangl, findminhs, GitHub https://github.com/Felerius/findminhs/

https://github.com/Timeroot/DVFS_PACE2022/
https://github.com/swacisko/pace-2022
https://github.com/Felerius/findminhs/

6. Practical Evaluation 6.5. Creating an improved solver 123

Read input

3 Data reduction

5.1 Iterative ILP5.5 Vertex Cover

5.1 Iterative Max SAT

TimeoutTimeout

5 min 30 min

25 min Solution

More uni-directedMore bi-directed
Already solved

Figure 6.6.: Overview of our improved solving approach

This has been implemented in exact.ImprovedDfvsSolver.

124 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

0 10 20 30 40 50 60 70 80 90 100
0

5min

10min

15min

20min

25min

30min

Our Combined Solver

Our Improved Solver

DAGer

Amount of solved instances

Tim
e
ta
ke
n

(a) Linear view

0 10 20 30 40 50 60 70 80 90 100
1ms

10ms

100ms

1s

10s

100s

16.6min

Our combined solver

Our Improved Solver

DAGer

Amount of solved instances

Tim
e
ta
ke
n

(b) Logarithmic view

Figure 6.7.: Comparison of our improved solving approaches and DAGer

125

7. Conclusion

We have presented several approaches to solve DFVS in theory and practice. We will first give
an overview of our most interesting contributions and important observations.

After that, we discuss how research on DFVS and very similar related problems could be de-
veloped further. Parts of our observations can also be translated to the practical solving of
other NP-hard problems. We furthermore review the research process itself and possible future
applications of DFVS.

7.1. Summary

We were able to reach the main objectives of this thesis. We furthermore made several interest-
ing observations that we also presented.

We have presented an overview of the existing data reduction rules. For each rule, we presented
basic information on its running time and its effect on the graph, the origin of the rule and how
it can be applied.

We repeated the important result of Lin and Jou (2000), that only induced cycles are relevant
for solving. Based on this result, we created Reduction rules 14 and 15 that each solve the NP-
complete inverse Edge on Induced Cycle problem heuristically to be able to remove edges.
We have obtained both a rule that can be computed quickly and another that is more effective
at the expense of slightly more, though still polynomial, running time.

We furthermore presented Reduction rules 17 and 18 that generalize the domination based
rules that have been known for a long time and are directed adaptations of reduction rules
for Vertex Cover from bi-directed edges to longer cycles. When incorporating our results from
the searches we performed for the Edge on Induced Cycle problem, we are able to further
generalize the cycle domination based rules. We present this generalization for bi-directed
edges in Reduction rule 16 on page 64.

126 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Regarding steps towards a polynomial kernel for DFVS, we demonstrated that Reduction rule 14
on page 60 allows us to subsume the more complicated rules of the kernel of Bergougnoux et al.
(2021) without the need to supply a feedback vertex set of our instance. At the same time, we
were able to show that this is not sufficient as a kernel for general DFVS.

We have implemented the most promising data reduction rules and made this implementation
open source. We were able to verify their effect and gave an overview on their performance
on different types of instances. Future implementations could use this as the basis for selecting
fitting reduction rules for the instances that need to be solved.

Regarding the practical approaches to solving reduced instances, iteratively solving Hitting Set
proved most effective. Our linear reduction to Integer Linear Program however had a good
trade off with regard to its overall stability and performance and presented an approach that
to our knowledge was unique among the challenge participants.

Wewere able to improve the reduction from Hitting Set to Vertex Cover with improved gadgets
that we have discovered. These allow us to use a single gadget where we would have needed
multiple. This therefore substantially reduces the number of created vertices and edges. Since
it completed very quickly on a large number of instances that mostly resemble a Vertex Cover
problem, we used a Vertex Cover as the primary solver for the respective instances.

On graphs with mostly longer cycles, our existing strategy of an iterative reduction to Hitting
Set and further reducing this to Integer Linear Program remained successful. Notably, this
solving strategy completed on an instance that DAGer did not solve within the time limit.

We were able to modify our solver to be able to compete with the winning submission of the
PACE challenge, DAGer, by simply adapting their internal Max SAT solver. Apart from the
specific reduction itself, we were able to completely reuse our existing iterative implementation
that was initially created for ILP.

Overall, our new combined solver now completes on as many instances as DAGer within the
time limit, although it is slower on most of them. Within our own solver, there was a major
difference between the performance of the ILP solver when compared to the Max SAT solver.
On directed instances, the reduction to ILP was better than Max SAT. At the same time, we did
not even deeply integrate into the external solver to introduce new constraints interactively during
the ongoing computation. We could adapt our technique of choosing the reduction based on
the instance and reducing to ILP as well, also relying on constraints interactively created during
the runtime of the external solver. It is very plausible that the performance of DAGer could be
further improved in this way.

7. Conclusion 7.2. Further research on Directed Feedback Vertex Set 127

7.2. Further research on Directed Feedback Vertex Set

The open question of a polynomial kernel for DFVS remains. We provided a small step towards
the possible discovery of such a kernel with our new reduction rule.

We highlighted the importance of induced cycles for solving the problem. Future approaches
might extend upon our search for the absence of such cycles, although we already showed that
eliminating all edges not on an induced cycle would not be sufficient, as we demonstrated in
our example for our kernel in Section 4.3 on page 84.

A practical though not resource efficient way to compute results would be parallelization. The
solvers for Max SAT and ILP that we used to solve the instances we reduced to already support
parallel execution. This would be a natural starting point and, since most of the computation
time was spent on the solving of the problem instead of the data reduction rules, as evident
from Figure 6.4 on page 117, it would apply to the largest part of the computation. Furthermore,
applying a few branching-and-reduce steps could easily be parallelized and might further be
improved by communication between branches solved in parallel. While data reduction did
take long in practice, several of our rules would admit efficient parallelization. All the local rules
can be applied in parallel when ensuring that they are applied disjoint (see Kreowski, Kuske,
et al., 2008). The same applies to our search for edges not on induced cycles, as the set of
induced cycles does not change during deletion.

Vertex-weighted versions of DFVS may be more suitable for practical applications. Fortunately,
large parts of the data reduction rules can be adapted to respect weights, though re-implementing
might require more work for a couple of rules. Edges not on induced cycles as eliminated by
our new Reduction rule 14 on page 60 keep being irrelevant, the rules can thus be used as
previously. Domination rules need to be modified to only include a higher-weight vertex. All the
solving approaches that we explained in Chapter 5 on page 85 can be directly adapted for
weighted DFVS. For ILP and SAT reductions, we associate the constraint with the weight as a
penalty of selecting it. Branching remains completely unchanged, although we might want to
consider new branching strategies accounting for weights. In the worst case, if weights can be
represented with ideally small and possibly scaled integers, we could split vertices and create
the respective number of siblings with copies of their predecessors and successors.

It would furthermore be interesting to look into the practical solving of Subset Directed Feedback
Vertex Set, which can be seen as a generalization of DFVS (Chitnis et al., 2012). We try to
find a subset S ⊆ W of vertices of a subset W ⊆ V (G), such that all cycles passing through
W are covered. If W = V (G), this becomes DFVS. Several rules and solving techniques can
be directly adapted. For example, Reduction rules 4 and 5 do not close any cycles and could
be applied on the whole graph. Several rules for vertices on the edge ofW , that are connected
to vertices in V (G) \W could be introduced to directly include them if they are the only vertex

128 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

in W that lies on a cycle. We would need to modify our searches for example for Reduction
rule 15 not to stop when having found cycles completely within V (G) \W , but could reuse our
arguments if any vertex of such cycles is contained inW .

One of the most effective additions to current solvers would be a support of iteratively solving
DFVS. We could allow the solver to keep its current internal state and allow the later addition
of edges and/or vertices with new edges. This would be comparable to the lazy addition of
constraints to the Max SAT solver as used by DAGer. Alternatively, we could merely provide the
solver with an instance and a minimum DFVS on a large, possibly induced, subgraph of it. This
could be supported by existing FPT algorithms using iterative compression such as the algorithm
of Chen et al. (2008). When adding vertices, we could directly add them into the solution and
attempt performing iterative compression on this solution of size k + 1. Adding edges would
be possible while including either of their vertices if their addition would introduce a cycle that
is not covered by the solution. Both of these additions would be great opportunities for future
PACE challenges, and could for example constitute an additional track.

7.3. Solving other NP-hard problems

Large parts of our methods and methodology may be transferred to solving other problems. We
will first discuss solving approaches and then comment on the research process.

Applying reduction rules first has already been common practice. However, we see a tendency,
given the reduced instance, to perform a reduction to other problems for which highly optimized
solvers exist. This was the approach used by most other successful solvers within the PACE
challenge. Furthermore, many of the used solvers in turn relied on this approach as well, creating
a chain down towards the most basic and at the same time universal problems such as SAT.

Lazy constraint evaluation combined with a good selection of an internal solver gave DAGer
the edge in the PACE challenge. Otherwise, our practice of selecting the specific solving ap-
proach based on instance parameters was of great practical use, especially when instances
have structures that closely map to another problem as in our case Vertex Cover.

From the methodological point of view, we have been fairly successful in using an easy-to use
and rather high-level programming language. We were programming in a very flexible envi-
ronment, were able to rapidly prototype our ideas and were able to implement them easily.
Our development style was further supported by the fact that solving the problem was arguably
easiest to perform via reduction. We were able to externalize the “heavy lifting” to a highly
optimized native implementation and reduced the impact of our implementation not being fully
optimized.

7. Conclusion 7.4. Future practical applications 129

We furthermore hugely benefited from automated testing. Several teams slipped up in some
minor detail and were disqualified. We essentially performed a fuzzing by computing the mini-
mum solution with different combinations of enabled data reduction rules and several different
solving approaches that were implemented largely independently. Using this approach, we
were able to quickly identify subtle errors in our implementation that would only occur in very
rare edge cases. Finally, we performed mutation based testing1 to assess which parts of our
code were actually tested and paid greater attention on sections that were not covered by tests.

7.4. Future practical applications

Several practical applications on graphs may benefit from computing a minimum DFVS and
then performing further computations, for example using dynamic programming on the remain-
ing directed acyclic graph. Vertices in the DFVS would be handled separately. This would
both follow the idea of Kuosmanen et al. (2018) and could use their approach of transferring
dynamic programming from sequences to directed acyclic graphs using a Path Cover.

As such, DFVS might become much more relevant when even larger parts of our economy, for
example transportation become digitized and thus centrally manageable. For much frequented
systems, the gains of exact algorithms versus approximation or heuristics based approaches
may outweigh the additional computational costs and resource footprint of exact computation.

1Using PIT, https://pitest.org/, which provides great support for mutation based testing in the Java ecosys-
tem, since it does not have to rely on compiled code which would be far harder to perform mutations on.

https://pitest.org/

130

8. Bibliography

Abu-Khzam, Faisal N. (2007). “Kernelization Algorithms for d-Hitting Set Problems”. In: Algo-
rithms and Data Structures. Ed. by Frank Dehne, Jörg-Rüdiger Sack, and Norbert Zeh. Berlin,
Heidelberg: Springer, pp. 434–445. isbn: 978-3-540-73951-7. doi: 10.1007/978-3-540-
73951-7_38 (cit. on pp. 53, 72).

Abu-Khzam, Faisal N., Michael R. Fellows, Michael A. Langston, and W. Henry Suters (2007).
“Crown Structures for Vertex Cover Kernelization”. In: Theory of Computing Systems 41.3,
pp. 411–430. issn: 1432-4350, 1433-0490. doi: 10.1007/s00224-007-1328-0 (cit. on
pp. 51, 53).

Achterberg, Tobias, Timo Berthold, Thorsten Koch, and Kati Wolter (2008). “Constraint Integer
Programming: A New Approach to Integrate CP and MIP”. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems. Ed. by
Laurent Perron and Michael A. Trick. Berlin, Heidelberg: Springer, pp. 6–20. isbn: 978-3-
540-68155-7. doi: 10.1007/978-3-540-68155-7_4 (cit. on p. 35).

Angrick, Sebastian, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa
Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt (2022). “PACE Solver De-
scription: Mount Doom - An Exact Solver for Directed Feedback Vertex Set”. In: 17th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2022). Ed. by Holger
Dell and Jesper Nederlof. Vol. 249. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 28:1–28:4. isbn: 978-3-959-
77260-0. doi: 10.4230/LIPIcs.IPEC.2022.28 (cit. on p. 121).

– (2023). “Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover”. In:
21st International Symposium on Experimental Algorithms (SEA 2023). Ed. by Loukas
Georgiadis. Vol. 265. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 10:1–10:14. isbn: 978-3-959-77279-2. doi: 10.
4230/LIPIcs.SEA.2023.10 (cit. on pp. 119, 121).

Ausiello, Giorgio, Alessandro D. D’Atri, and Marco Protasi (1980). “Structure preserving reduc-
tions among convex optimization problems”. In: Journal of Computer and System Sciences
21.1, pp. 136–153. issn: 0022-0000. doi: 10.1016/0022-0000(80)90046-X (cit. on
p. 29).

Avellaneda, Florent (2020). A short description of the solver EvalMaxSAT. Ed. by Fahiem
Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins. Helsinki: University of Helsinki,
Department of Computer Science. url: https://hdl.handle.net/10138/318451 (cit. on
p. 33).

https://doi.org/10.1007/978-3-540-73951-7_38
https://doi.org/10.1007/978-3-540-73951-7_38
https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1007/978-3-540-68155-7_4
https://doi.org/10.4230/LIPIcs.IPEC.2022.28
https://doi.org/10.4230/LIPIcs.SEA.2023.10
https://doi.org/10.4230/LIPIcs.SEA.2023.10
https://doi.org/10.1016/0022-0000(80)90046-X
https://hdl.handle.net/10138/318451

Bibliography Bibliography 131

Bafna, Vineet, Piotr Berman, and Toshihiro Fujito (1999). “A 2-Approximation Algorithm for the
Undirected Feedback Vertex Set Problem”. In: SIAM Journal on Discrete Mathematics 12.3,
pp. 289–297. issn: 0895-4801, 1095-7146. doi: 10.1137/S0895480196305124 (cit. on
pp. 73, 105).

Bang-Jensen, Jørgen and Gregory Z Gutin (2009). Digraphs: theory, algorithms and appli-
cations. Springer Monographs in Mathematics. London: Springer London. isbn: 978-0-857-
29041-0. doi: 10.1007/978-1-84800-998-1 (cit. on p. 15).

Bang-Jensen, Jørgen, Alessandro Maddaloni, and Saket Saurabh (2016). “Algorithms and Ker-
nels for Feedback Set Problems in Generalizations of Tournaments”. In: Algorithmica 76.2,
pp. 320–343. doi: 10.1007/S00453-015-0038-2 (cit. on pp. 12, 72).

Barabási, Albert-László and Réka Albert (1999). “Emergence of Scaling in Random Networks”.
In: Science 286.5439, pp. 509–512. doi: 10.1126/science.286.5439.509 (cit. on
p. 12).

Barrett, Clark, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli (2021). “Satisfiability
Modulo Theories”. In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans
van Maaren, and Toby Walsh. 2nd ed. Amsterdam: IOS Press. Chap. 33, pp. 1267–1329.
isbn: 978-1-643-68160-3. doi: 10.3233/FAIA201017 (cit. on p. 32).

Bentert, Matthias, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, William Lochet, Fahad
Panolan, M. S. Ramanujan, Saket Saurabh, and Kirill Simonov (2024). Packing Short Cycles.
arXiv: 2410.18878 (cit. on p. 87).

Berg, Jeremias, Matti Järvisalo, Ruben Martins, Andreas Niskanen, and Tobias Paxian (2024).
“MaxSAT Evaluation 2024: Solver and Benchmark Descriptions”. In: Department of Com-
puter Science Series of Publications B. url: https://hdl.handle.net/10138/584878
(cit. on p. 33).

Bergenthal, Moritz, Jona Dirks, Thorben Freese, Jakob Gahde, Enna Gerhard, Mario Grobler,
and Sebastian Siebertz (2022). “PACE Solver Description: GraPA-JAVA”. In: 17th Interna-
tional Symposium on Parameterized and Exact Computation 2022. Ed. by Holger Dell and
Jesper Nederlof. Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 30:1–30:4.
doi: 10.4230/LIPICS.IPEC.2022.30 (cit. on pp. 12, 119).

Bergougnoux, Benjamin, Eduard Eiben, Robert Ganian, Sebastian Ordyniak, and M. S. Ra-
manujan (2021). “Towards a Polynomial Kernel for Directed Feedback Vertex Set”. In: Algo-
rithmica 83.5, pp. 1201–1221. issn: 1432-0541. doi: 10.1007/s00453-020-00777-5
(cit. on pp. 3, 4, 13–15, 36, 38, 42–44, 67, 72–75, 78, 80, 82, 84, 126).

Biere, Armin, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger (2020). “CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020”. In: Pro-
ceedings of SAT Competition 2020 – Solver and Benchmark Descriptions. Ed. by Tomas
Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Vol. B-
2020-1. Department of Computer Science Report Series B. University of Helsinki, pp. 51–
53. url: http://hdl.handle.net/10138/318754 (cit. on pp. 31, 96).

Biere, Armin, Matti Järvisalo, and Benjamin Kiesl (2021). “Preprocessing”. In: Handbook of
Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2nd ed.
Amsterdam: IOS Press. Chap. 9, pp. 391–435. isbn: 978-1-643-68160-3. doi: 10.3233/
FAIA200992 (cit. on p. 36).

https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/S00453-015-0038-2
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.3233/FAIA201017
https://arxiv.org/abs/2410.18878
https://hdl.handle.net/10138/584878
https://doi.org/10.4230/LIPICS.IPEC.2022.30
https://doi.org/10.1007/s00453-020-00777-5
http://hdl.handle.net/10138/318754
https://doi.org/10.3233/FAIA200992
https://doi.org/10.3233/FAIA200992

132 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Biere, Armin, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey (2014). “Detecting Car-
dinality Constraints in CNF”. In: Theory and Applications of Satisfiability Testing – SAT
2014. Ed. by Carsten Sinz and Uwe Egly. Cham: Springer International Publishing, pp. 285–
301. isbn: 978-3-319-09284-3. doi: 10.1007/978-3-319-09284-3_22 (cit. on p. 96).

Bittner, Paul Maximilian, Thomas Thüm, and Ina Schaefer (2019). “SAT Encodings of the At-
Most-k Constraint”. In: Software Engineering and Formal Methods. Ed. by Peter Csaba
Ölveczky and Gwen Salaün. Cham: Springer International Publishing, pp. 127–144. isbn:
978-3-030-30446-1. doi: 10.1007/978-3-030-30446-1_7 (cit. on p. 95).

Bodlaender, Hans L. and Thomas C. van Dijk (2010). “A Cubic Kernel for Feedback Vertex Set
and Loop Cutset”. In: Theory of Computation Systems 46.3, pp. 566–597. doi: 10.1007/
S00224-009-9234-2 (cit. on p. 73).

Bodlaender, Hans L., Rodney G. Downey, Michael R. Fellows, and Danny Hermelin (2009).
“On problems without polynomial kernels”. In: Journal of Computer and System Sciences
75.8, pp. 423–434. issn: 0022-0000. doi: 10.1016/j.jcss.2009.04.001 (cit. on p. 23).

Červený, Radovan,Michal Dvořák, Xuan ThangNguyen, Jan Pokorný, Lucie Procházková, Jaroslav
Urban, Václav Blažej, Dušan Knop, Šimon Schierreich, and Ondřej Suchý (2022). Descrip-
tion of the G2OAT Solver for PACE 2022 Exact track. Prague: Faculty of Information Technol-
ogy, Czech Technical University. url: https://gitlab.fit.cvut.cz/pace-challenge/
2022/goat/exact/-/blob/master/paper.pdf (cit. on pp. 58, 59, 74, 119, 121).

Chakradhar, Srimat T., Arun Balakrishnan, and Vishwani D. Agrawal (1994). “An exact algo-
rithm for selecting partial scan flip-flops”. In: Proceedings of the 31st Annual Design Au-
tomation Conference. DAC 1994. San Diego, CA: Association for Computing Machinery,
pp. 81–86. isbn: 0-89791-653-0. doi: 10.1145/196244.196285 (cit. on p. 11).

Chen, Jianer, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon (2008). “A Fixed-Pa-
rameter Algorithm for the Directed Feedback Vertex Set Problem”. In: Journal of the ACM
55.5. issn: 0004-5411. doi: 10.1145/1411509.1411511 (cit. on pp. 22, 26, 85, 128).

Chitnis, Rajesh, Marek Cygan, Mohammadtaghi Hajiaghayi, and Dániel Marx (2012). “Di-
rected Subset Feedback Vertex Set Is Fixed-Parameter Tractable”. In: Automata, Languages,
and Programming. Ed. by Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Watten-
hofer. Berlin, Heidelberg: Springer, pp. 230–241. isbn: 978-3-642-31594-7. doi: 10.1007/
978-3-642-31594-7_20. arXiv: 1205.1271 (cit. on p. 127).

Chong, Edwin K. P. and Stanislaw H. Żak (2008). “Introduction to Linear Programming”. In:
An Introduction to Optimization. John Wiley & Sons, Ltd. Chap. 15, pp. 297–331. isbn:
978-1-118-03334-0. doi: 10.1002/9781118033340.ch15 (cit. on pp. 33, 34).

Cozzens, Margaret (Midge) (2015). “Chapter 2 - Food Webs and Graphs”. In: Algebraic
and Discrete Mathematical Methods for Modern Biology. Ed. by Raina S. Robeva. Boston,
MA: Academic Press, pp. 29–49. isbn: 978-0-12-801213-0. doi: 10.1016/B978-0-12-
801213-0.00002-2 (cit. on p. 10).

Darwiche, Adnan and Knot Pipatsrisawat (2021). “Complete Algorithms”. In: Handbook of
Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2nd ed.
Amsterdam: IOS Press. Chap. 3, pp. 101–132. isbn: 978-1-643-68160-3. doi: 10.3233/
FAIA200986 (cit. on p. 93).

https://doi.org/10.1007/978-3-319-09284-3_22
https://doi.org/10.1007/978-3-030-30446-1_7
https://doi.org/10.1007/S00224-009-9234-2
https://doi.org/10.1007/S00224-009-9234-2
https://doi.org/10.1016/j.jcss.2009.04.001
https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact/-/blob/master/paper.pdf
https://gitlab.fit.cvut.cz/pace-challenge/2022/goat/exact/-/blob/master/paper.pdf
https://doi.org/10.1145/196244.196285
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1007/978-3-642-31594-7_20
https://doi.org/10.1007/978-3-642-31594-7_20
https://arxiv.org/abs/1205.1271
https://doi.org/10.1002/9781118033340.ch15
https://doi.org/10.1016/B978-0-12-801213-0.00002-2
https://doi.org/10.1016/B978-0-12-801213-0.00002-2
https://doi.org/10.3233/FAIA200986
https://doi.org/10.3233/FAIA200986

Bibliography Bibliography 133

Deutscher, David, IsaacMeilijson, Martin Kupiec, and Eytan Ruppin (2006). “Multiple knockout
analysis of genetic robustness in the yeast metabolic network”. en. In: Nature Genetics 38.9,
pp. 993–998. issn: 1061-4036, 1546-1718. doi: 10.1038/ng1856 (cit. on p. 8).

Dey, Sujit, Miodrag Potkonjak, and Rabindra Roy (1994). “Synthesizing designs with low-cardinality
minimum feedback vertex set for partial scan application”. In: Proceedings of IEEE VLSI Test
Symposium, pp. 2–7. doi: 10.1109/VTEST.1994.292342 (cit. on p. 11).

Dinitz, Yefim (1970). “Algorithm for solution of a problem of maximum flow in a network with
power estimation”. In: Doklady Akademii Nauk SSSR 194.4. Title translated from Russian.
The author appears as E.A. Dinic in the original publication, pp. 754–757. url: https:
//www.mathnet.ru/eng/dan/v194/i4/p754 (cit. on p. 20).

– (2006). “Dinitz’ Algorithm: The Original Version and Even’s Version”. In: Theoretical Com-
puter Science: Essays in Memory of Shimon Even. Ed. by Oded Goldreich, Arnold L. Rosen-
berg, and Alan L. Selman. Berlin, Heidelberg: Springer, pp. 218–240. isbn: 978-3-540-
32881-0. doi: 10.1007/11685654_10 (cit. on p. 20).

Dirks, Jona and Enna Gerhard (2024). “A Novel Heuristic for Finding Vertices and Edges not
on Induced Cycles”. In: Studierendenkonferenz Informatik SKILL 2024. To appear. Bonn:
Gesellschaft für Informatik (cit. on pp. 13, 63).

Dirks, Jona, Enna Gerhard, Mario Grobler, Amer E. Mouawad, and Sebastian Siebertz (2024).
“Data Reduction for Directed Feedback Vertex Set on GraphsWithout Long Induced Cycles”.
In: SOFSEM 2024: Theory and Practice of Computer Science - 49th International Confer-
ence on Current Trends in Theory and Practice of Computer Science, SOFSEM 2024,
Cochem, February 19-23, 2024, Proceedings. Ed. by Henning Fernau, Serge Gaspers,
and Ralf Klasing. Vol. 14519. Lecture Notes in Computer Science. Springer International
Publishing, pp. 183–197. doi: 10.1007/978-3-031-52113-3_13. arXiv: 2308.15900
(cit. on pp. 13, 53, 72).

Dom, Michael, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truss (2010). “Fixed-
parameter tractability results for feedback set problems in tournaments”. In: Journal of Dis-
crete Algorithms 8.1, pp. 76–86. issn: 1570-8667. doi: 10.1016/j.jda.2009.08.001
(cit. on p. 72).

Dzulfikar, M. Ayaz, Johannes K. Fichte, and Markus Hecher (2019). “The PACE 2019 Parame-
terized Algorithms and Computational Experiments Challenge: The Fourth Iteration”. In: 14th
International Symposium on Parameterized and Exact Computation (IPEC 2019). Ed. by
Bart M. P. Jansen and Jan Arne Telle. Vol. 148. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 25:1–25:23. isbn:
978-3-959-77129-0. doi: 10.4230/LIPIcs.IPEC.2019.25 (cit. on p. 27).

Eppstein, David, Maarten Löffler, and Darren Strash (2013). “Listing All Maximal Cliques in
Large Sparse Real-World Graphs”. In: ACM Journal of Experimental Algorithmics 18. issn:
1084-6654. doi: 10.1145/2543629 (cit. on p. 96).

Eppstein, David and Darren Strash (2011). “Listing All Maximal Cliques in Large Sparse Real-
World Graphs”. In: Experimental Algorithms. Ed. by Panos M. Pardalos and Steffen Reben-
nack. Berlin, Heidelberg: Springer, pp. 364–375. isbn: 978-3-642-20662-7. doi: 10.1007/
978-3-642-20662-7_31 (cit. on p. 96).

https://doi.org/10.1038/ng1856
https://doi.org/10.1109/VTEST.1994.292342
https://www.mathnet.ru/eng/dan/v194/i4/p754
https://www.mathnet.ru/eng/dan/v194/i4/p754
https://doi.org/10.1007/11685654_10
https://doi.org/10.1007/978-3-031-52113-3_13
https://arxiv.org/abs/2308.15900
https://doi.org/10.1016/j.jda.2009.08.001
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1145/2543629
https://doi.org/10.1007/978-3-642-20662-7_31
https://doi.org/10.1007/978-3-642-20662-7_31

134 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Erdős, Paul and Richard Rado (1960). “Intersection Theorems for Systems of Sets”. In: Journal of
the London Mathematical Society s1-35.1, pp. 85–90. doi: 10.1112/jlms/s1-35.1.85
(cit. on p. 67).

Even, Guy, Joseph Naor, Baruch Schieber, and Madhu Sudan (1998). “Approximating Min-
imum Feedback Sets and Multicuts in Directed Graphs”. In: Algorithmica 20.2, pp. 151–
174. issn: 0178-4617. doi: 10.1007/PL00009191 (cit. on p. 22).

Even, Shimon and Robert Tarjan (1975). “Network Flow and Testing Graph Connectivity”. In:
SIAM Journal on Computing 4.4, pp. 507–518. doi: 10.1137/0204043 (cit. on pp. 20,
84).

Fellows, Michael R., Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias Weller
(2018). “What Is Known About Vertex Cover Kernelization?” In: Essays Dedicated to Juraj
Hromkovič on the Occasion of His 60th Birthday. The journal version of this paper contained
an error that made the contained reduction rules unusable. This has been fixed in the updated
version on arXiv.org. Cham: Springer International Publishing, pp. 330–356. doi: 10.1007/
978-3-319-98355-4_19. arXiv: 1811.09429v4 (cit. on pp. 36, 46, 47, 50).

Fellows, Michael R., Jan Kratochvil, Matthias Middendorf, and Frank Pfeiffer (1995). “The com-
plexity of induced minors and related problems”. In: Algorithmica 13.3, pp. 266–282. issn:
1432-0541. doi: 10.1007/BF01190507 (cit. on p. 53).

Fleischer, Lisa K., Bruce Hendrickson, and Ali Pınar (2000). “On Identifying Strongly Connected
Components in Parallel”. In: Parallel and Distributed Processing. Ed. by José Rolim. Berlin,
Heidelberg: Springer, pp. 505–511. isbn: 978-3-540-45591-2. doi: 10.1007/3-540-
45591-4_68 (cit. on p. 54).

Fleischer, Rudolf, Xi Wu, and Liwei Yuan (2009). “Experimental Study of FPT Algorithms for the
Directed Feedback Vertex Set Problem”. In: Algorithms - ESA 2009. Ed. by Amos Fiat and
Peter Sanders. Berlin, Heidelberg: Springer, pp. 611–622. isbn: 978-3-642-04128-0. doi:
10.1007/978-3-642-04128-0_55 (cit. on pp. 41, 43, 44, 53, 67).

Fomin, Fedor V., Fabrizio Grandoni, and Dieter Kratsch (2009). “A measure & conquer ap-
proach for the analysis of exact algorithms”. In: Journal of the ACM 56.5. issn: 0004-5411.
doi: 10.1145/1552285.1552286 (cit. on p. 47).

Fomin, Fedor V., Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi (2019a). “Open Prob-
lems”. In:Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press,
pp. 467–473. doi: 10.1017/9781107415157.026 (cit. on p. 12).

– (2019b). “Problem Definitions”. In: Kernelization: Theory of Parameterized Preprocessing.
Cambridge University Press, pp. 477–482. doi: 10.1017/9781107415157.028 (cit. on
pp. 25, 26, 28, 29, 31, 32).

– (2019c). “What Is a Kernel?” In: Kernelization: Theory of Parameterized Preprocessing.
Cambridge University Press, pp. 1–12. doi: 10.1017/9781107415157.003 (cit. on pp. 21,
22).

Ford, Lester R. and Delbert R. Fulkerson (1956). “Maximal Flow Through a Network”. In: Cana-
dian Journal of Mathematics 8, pp. 399–404. doi: 10.4153/CJM-1956-045-5 (cit. on
p. 20).

https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1007/PL00009191
https://doi.org/10.1137/0204043
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-3-319-98355-4_19
https://arxiv.org/abs/1811.09429v4
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1007/978-3-642-04128-0_55
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1017/9781107415157.026
https://doi.org/10.1017/9781107415157.028
https://doi.org/10.1017/9781107415157.003
https://doi.org/10.4153/CJM-1956-045-5

Bibliography Bibliography 135

Funke, Daniel, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz von
Looz (2018). “Communication-FreeMassively Distributed GraphGeneration”. In: 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 336–347. doi:
10.1109/IPDPS.2018.00043. arXiv: 1710.07565 (cit. on p. 111).

Gerhard, Enna (2021). “Bi-Kelly-Width”. Supervised by Sebastian Siebertz. Bachelor Thesis.
University of Bremen. url: https://www.szi.uni-bremen.de/wp-content/uploads/
2021/08/Bachelorarbeit-Enna-Gerhard-Digital-Edition.pdf (cit. on pp. 15, 22).

Großmann, Ernestine, Tobias Heuer, Christian Schulz, and Darren Strash (2022). “The PACE
2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feed-
back Vertex Set”. In: 17th International Symposium on Parameterized and Exact Compu-
tation (IPEC 2022). Ed. by Holger Dell and Jesper Nederlof. Vol. 249. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 26:1–26:18. isbn: 978-3-959-77260-0. doi: 10.4230/LIPIcs.IPEC.2022.26
(cit. on pp. 9, 12, 23, 111, 112, 119).

Hespe, Demian, Sebastian Lamm, Christian Schulz, and Darren Strash (2020). “WeGotYouCov-
ered: TheWinning Solver from the PACE 2019 Challenge, Vertex Cover Track”. In: 2020 Pro-
ceedings of the SIAM Workshop on Combinatorial Scientific Computing (CSC), pp. 1–11.
doi: 10.1137/1.9781611976229.1. arXiv: 1908.06795 (cit. on pp. 27, 36, 107).

Hunter, Paul and Stephan Kreutzer (2008). “Digraph Measures: Kelly Decompositions‚ Games‚
and Orderings”. In: Theoretical Computer Science 399. doi: 10.1016/j.tcs.2008.02.
038 (cit. on p. 89).

Jansen, Bart M. P. and Hans L. Bodlaender (2013). “Vertex Cover Kernelization Revisited -
Upper and Lower Bounds for a Refined Parameter”. In: Theory of Computing Systems 53.2,
pp. 263–299. doi: 10.1007/S00224-012-9393-4 (cit. on p. 72).

Kahn, A. B. (1962). “Topological sorting of large networks”. In: Communications of the ACM
5.11, pp. 558–562. issn: 0001-0782. doi: 10.1145/368996.369025 (cit. on pp. 25, 43,
71, 86).

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of Computer
Computations. Ed. by Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger. Boston,
MA: Springer US, pp. 85–103. isbn: 978-1-468-42001-2. doi: 10.1007/978-1-4684-
2001-2_9 (cit. on pp. 11, 21, 22, 25–28).

Kiesel, Rafael and André Schidler (2022). “PACE Solver Description: DAGer - Cutting out Cycles
with MaxSAT”. In: 17th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2022). Ed. by Holger Dell and Jesper Nederlof. Vol. 249. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 32:1–32:4. isbn: 978-3-959-77260-0. doi: 10.4230/LIPIcs.IPEC.2022.32 (cit.
on p. 121).

– (2023). “A Dynamic MaxSAT-based Approach to Directed Feedback Vertex Sets”. In: 2023
Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX), pp. 39–
52. doi: 10.1137/1.9781611977561.ch4. arXiv: 2211.06109 (cit. on pp. 119, 121).

Knuth, Donald E. (1976). “Big Omicron and big Omega and big Theta”. In: ACM SIGACT
News 8.2, pp. 18–24. issn: 0163-5700. doi: 10.1145/1008328.1008329 (cit. on p. 19).

https://doi.org/10.1109/IPDPS.2018.00043
https://arxiv.org/abs/1710.07565
https://www.szi.uni-bremen.de/wp-content/uploads/2021/08/Bachelorarbeit-Enna-Gerhard-Digital-Edition.pdf
https://www.szi.uni-bremen.de/wp-content/uploads/2021/08/Bachelorarbeit-Enna-Gerhard-Digital-Edition.pdf
https://doi.org/10.4230/LIPIcs.IPEC.2022.26
https://doi.org/10.1137/1.9781611976229.1
https://arxiv.org/abs/1908.06795
https://doi.org/10.1016/j.tcs.2008.02.038
https://doi.org/10.1016/j.tcs.2008.02.038
https://doi.org/10.1007/S00224-012-9393-4
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.IPEC.2022.32
https://doi.org/10.1137/1.9781611977561.ch4
https://arxiv.org/abs/2211.06109
https://doi.org/10.1145/1008328.1008329

136 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Kreowski, Hans-Jörg, Renate Klempien-Hinrichs, and Sabine Kuske (2006). “Some essentials of
graph transformation”. In: Recent Advances in Formal Languages and Applications. Studies
in Computational Intelligence. Berlin, Heidelberg: Springer, pp. 229–254. doi: 10.1007/
978-3-540-33461-3_9 (cit. on p. 40).

Kreowski, Hans-Jörg, Sabine Kuske, and Grzegorz Rozenberg (2008). “Graph Transformation
Units — An Overview”. In: Concurrency, Graphs and Models: Essays Dedicated to Ugo
Montanari on the Occasion of His 65th Birthday. Berlin, Heidelberg: Springer, pp. 57–75.
isbn: 978-3-540-68676-7. doi: 10.1007/978-3-540-68679-8_5 (cit. on pp. 40, 127).

Kun, Ádám, Balázs Papp, and Eörs Szathmáry (2008). “Computational identification of obliga-
torily autocatalytic replicators embedded in metabolic networks”. In: Genome Biology 9.3,
R51. issn: 1474-760X. doi: 10.1186/gb-2008-9-3-r51 (cit. on p. 8).

Kuosmanen, Anna, Topi Paavilainen, Travis Gagie, Rayan Chikhi, Alexandru Tomescu, and Veli
Mäkinen (2018). “Using Minimum Path Cover to Boost Dynamic Programming on DAGs:
Co-linear Chaining Extended”. In: Research in Computational Molecular Biology. Ed. by
Benjamin J. Raphael. Cham: Springer International Publishing, pp. 105–121. isbn: 978-3-
319-89929-9. doi: 10.1007/978-3-319-89929-9_7 (cit. on p. 129).

Leiserson, Charles E. and James B. Saxe (1991). “Retiming synchronous circuitry”. In: Algorith-
mica 6.1-6, pp. 5–35. issn: 0178-4617, 1432-0541. doi: 10.1007/BF01759032 (cit. on
p. 11).

Levy, Hanoch and David W Low (1988). “A contraction algorithm for finding small cycle cut-
sets”. In: Journal of Algorithms 9.4, pp. 470–493. issn: 0196-6774. doi: 10.1016/0196-
6774(88)90013-2 (cit. on pp. 41, 43, 44).

Li, ChuMin, Hua Jiang, and FelipManyà (2017). “Onminimization of the number of branches in
branch-and-bound algorithms for the maximum clique problem”. In:Computers & Operations
Research 84, pp. 1–15. issn: 0305-0548. doi: 10.1016/j.cor.2017.02.017 (cit. on
p. 27).

Li, Chu Min and Felip Manyà (2021). “MaxSAT, Hard and Soft Constraints”. In: Handbook of
Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2nd ed.
Amsterdam: IOS Press. Chap. 23, pp. 903–927. isbn: 978-1-643-68160-3. doi: 10.3233/
FAIA201007 (cit. on p. 32).

Li, Ruiming, Chun-Yu Lin, Wei-Feng Guo, and Tatsuya Akutsu (2021). “Weighted minimum feed-
back vertex sets and implementation in human cancer genes detection”. In: BMC Bioinfor-
matics 22.1, p. 143. issn: 1471-2105. doi: 10.1186/s12859-021-04062-2 (cit. on
p. 11).

Lichtenstein, Orna and Amir Pnueli (1985). “Checking that finite state concurrent programs sat-
isfy their linear specification”. In: Proceedings of the 12th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages. POPL 1985. New Orleans, LA: Association
for Computing Machinery, pp. 97–107. isbn: 0-89791-147-4. doi: 10.1145/318593.
318622 (cit. on p. 11).

Lin, Hen-Ming and Jing-Yang Jou (2000). “On computing the minimum feedback vertex set of a
directed graph by contraction operations”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19.3, pp. 295–307. doi: 10.1109/43.833199 (cit. on
pp. 11, 41, 43, 44, 53, 54, 58, 59, 125).

https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-68679-8_5
https://doi.org/10.1186/gb-2008-9-3-r51
https://doi.org/10.1007/978-3-319-89929-9_7
https://doi.org/10.1007/BF01759032
https://doi.org/10.1016/0196-6774(88)90013-2
https://doi.org/10.1016/0196-6774(88)90013-2
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.3233/FAIA201007
https://doi.org/10.3233/FAIA201007
https://doi.org/10.1186/s12859-021-04062-2
https://doi.org/10.1145/318593.318622
https://doi.org/10.1145/318593.318622
https://doi.org/10.1109/43.833199

Bibliography Bibliography 137

Lokshtanov, Daniel, M. S. Ramanujan, and Saket Saurabh (2018). “When Recursion is Better
than Iteration: A Linear-Time Algorithm for Acyclicity with Few Error Vertices”. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, January 7-10, 2018. Ed. by Artur Czumaj. SIAM, pp. 1916–1933. doi:
10.1137/1.9781611975031.125 (cit. on p. 26).

Lokshtanov, Daniel, M. S. Ramanujan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi
(2019). “Wannabe Bounded Treewidth Graphs Admit a Polynomial Kernel for DFVS”. In:
Algorithms and Data Structures. Ed. by Zachary Friggstad, Jörg-Rüdiger Sack, and Moham-
mad R Salavatipour. Cham: Springer International Publishing, pp. 523–537. isbn: 978-3-
030-24766-9. doi: 10.1007/978-3-030-24766-9_38 (cit. on pp. 11, 72).

Lubiw, Anna (1988). “A note on odd/even cycles”. In: Discrete Applied Mathematics 22.1,
pp. 87–92. issn: 0166-218X. doi: 10.1016/0166-218X(88)90125-4 (cit. on p. 53).

Meiburg, Alex (2022). Reduction Rules and ILP Are All You Need: Minimal Directed Feed-
back Vertex Set. arXiv: 2208.01119 (cit. on pp. 119, 122).

Mnich, Matthias and Erik Jan van Leeuwen (2017). “Polynomial kernels for deletion to classes
of acyclic digraphs”. In: Discrete Optimization 25, pp. 48–76. issn: 1572-5286. doi: 10.
1016/j.disopt.2017.02.002 (cit. on p. 72).

Morgado, Antonio, Carmine Dodaro, and JoaoMarques-Silva (2014). “Core-GuidedMaxSAT
with Soft Cardinality Constraints”. In: Principles and Practice of Constraint Programming.
Ed. by Barry O’Sullivan. Cham: Springer International Publishing, pp. 564–573. isbn: 978-
3-319-10428-7. doi: 10.1007/978-3-319-10428-7_41 (cit. on p. 33).

Nutov, Zeev and Raphael Yuster (2004). “Packing Directed Cycles Efficiently”. In:Mathematical
Foundations of Computer Science 2004. Ed. by Jiří Fiala, Václav Koubek, and Jan Kratochvíl.
Berlin, Heidelberg: Springer, pp. 310–321. isbn: 978-3-540-28629-5. doi: 10.1007/978-
3-540-28629-5_22 (cit. on p. 68).

Plachetta, Rick and Alexander van der Grinten (2021). “SAT-and-Reduce for Vertex Cover:
Accelerating Branch-and-Reduce by SAT Solving”. In: Proceedings of the Symposium on
Algorithm Engineering and Experiments (ALENEX), pp. 169–180. doi: 10 . 1137 / 1 .
9781611976472.13 (cit. on p. 107).

Prestwich, Steven (2021). “CNF Encodings”. In: Handbook of Satisfiability. Ed. by Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh. 2nd ed. Amsterdam: IOS Press. Chap. 2,
pp. 75–100. isbn: 978-1-643-68160-3. doi: 10.3233/FAIA200985 (cit. on p. 31).

Savelsbergh, Martin W. P. (1994). “Preprocessing and Probing Techniques for Mixed Integer
Programming Problems”. In: ORSA Journal on Computing 6.4, pp. 445–454. issn: 0899-
1499. doi: 10.1287/ijoc.6.4.445 (cit. on p. 36).

Sun, Hao (2024). “AConstant Factor Approximation for Directed Feedback Vertex Set in Graphs
of Bounded Genus”. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2024). Ed. by Amit Kumar and Noga
Ron-Zewi. Vol. 317. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 18:1–18:20. isbn: 978-3-95977-348-5. doi: 10.
4230/LIPIcs.APPROX/RANDOM.2024.18 (cit. on p. 22).

https://doi.org/10.1137/1.9781611975031.125
https://doi.org/10.1007/978-3-030-24766-9_38
https://doi.org/10.1016/0166-218X(88)90125-4
https://arxiv.org/abs/2208.01119
https://doi.org/10.1016/j.disopt.2017.02.002
https://doi.org/10.1016/j.disopt.2017.02.002
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-540-28629-5_22
https://doi.org/10.1007/978-3-540-28629-5_22
https://doi.org/10.1137/1.9781611976472.13
https://doi.org/10.1137/1.9781611976472.13
https://doi.org/10.3233/FAIA200985
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.18
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.18

138 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Swat, Sylwester (2022a). “PACE Solver Description: DiVerSeS - A Heuristic Solver for the Di-
rected Feedback Vertex Set Problem”. In: 17th International Symposium on Parameterized
and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam. Ed. by Holger Dell
and Jesper Nederlof. Vol. 249. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 27:1–
27:3. doi: 10.4230/LIPICS.IPEC.2022.27 (cit. on p. 122).

– (2022b). PACE Solver Description: Finding optimal feedback vertex sets of directed graphs
using DiVerSeS. Version v1.0.1. The exact solver description is only contained in Version
v.1.0.1. Filepath: /DiVerSeS_description/DiVerSeS_description_exact.pdf. doi: 10.
5281/zenodo.6657522 (cit. on pp. 41, 43, 44, 54, 58, 122).

Tamura, Takeyuki, Kazuhiro Takemoto, and Tatsuya Akutsu (2010). “Finding Minimum Reac-
tion Cuts of Metabolic Networks Under a Boolean Model Using Integer Programming and
Feedback Vertex Sets”. In: International Journal of Knowledge Discovery in Bioinformatics
(IJKDB) 1.1, pp. 14–31. issn: 1947-9115. doi: 10.4018/jkdb.2010100202 (cit. on p. 8).

Tarjan, Robert (1972). “Depth-First Search and Linear Graph Algorithms”. In: SIAM Journal on
Computing 1.2, pp. 146–160. doi: 10.1137/0201010 (cit. on p. 54).

Van Bevern, René (2013). “Towards Optimal and Expressive Kernelization for d-Hitting Set”.
en. In: Algorithmica. issn: 0178-4617, 1432-0541. doi: 10.1007/s00453-013-9774-3
(cit. on p. 67).

Vanderbei, Robert J. (2020). Linear Programming: Foundations and Extensions. Vol. 285.
International Series in Operations Research & Management Science. Cham: Springer Inter-
national Publishing. isbn: 978-3-030-39415-8. doi: 10.1007/978-3-030-39415-8 (cit. on
pp. 33, 34).

Weihe, Karsten (1998). “Covering Trains by Stations or the Power of Data Reduction”. In: Pro-
ceedings of Algorithms and Experiments (ALEX98). Ed. by Roberto Battati, Alan Bertossi,
and Silvano Martello. Trento (cit. on p. 53).

Xiong, Ziliang and Mingyu Xiao (2024). A Simplified Parameterized Algorithm for Directed
Feedback Vertex Set. arXiv: 2410.15411 (cit. on p. 26).

All references have been verified on November 22, 2024. Digital Object Identifiers (DOIs) can
be resolved through https://www.doi.org/. Articles published via arXiv can be accessed via
https://www.arxiv.org/.

References in the text use surnames except for authors sharing a surname, in this case full initials
are added. Three or more authors are shortened to et al., only the first author appears unless
this author appears in several different constellations. If there are multiple publications for the
same group of authors in a single year, a letter is added to the year to distinguish them. In the
bibliography, entries are grouped if they have been published by the same authors.

https://doi.org/10.4230/LIPICS.IPEC.2022.27
https://doi.org/10.5281/zenodo.6657522
https://doi.org/10.5281/zenodo.6657522
https://doi.org/10.4018/jkdb.2010100202
https://doi.org/10.1137/0201010
https://doi.org/10.1007/s00453-013-9774-3
https://doi.org/10.1007/978-3-030-39415-8
https://arxiv.org/abs/2410.15411
https://www.doi.org/
https://www.arxiv.org/

139

A. Appendix

A.1. Thanks

I would like to thank everyone that supported me during the creation of this thesis. From the
members of the original project to the theory group in which we continued our research to
everyone that made me a cup of tea while I was writing: thank you! I was able to write in the
most hospitable of places – from staying with friends to spontaneous co-working sessions to all
the lovely cafes and tea rooms, both locally and abroad.

It is needless to say that I will always remember this special time of working on the Directed
Feedback Vertex Set problem.

A.2. Implementation

The implementation can be found in the GitLab repository of the department at https://
gitlab.informatik.uni-bremen.de/grapa/java. The packages of the solver are located
at de.uni.bremen.grapa.solver, the packages of the library at de.uni.bremen.grapa.library.

An archive containing the source code of the improved solver and the extended performance
measurements conduced for this thesis accompanies this submission.

A.3. Tables

The following pages contain detailed information regarding the effects of data reduction rules
and different solving approaches.

https://gitlab.informatik.uni-bremen.de/grapa/java
https://gitlab.informatik.uni-bremen.de/grapa/java

140 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Before reduction After reduction Reduct.
Ins. n m undir. k n m undir. k Time Type
051 32k 246k 116k 21k 69 271 134 45 817 ms UNDIR
052 16k 77k 38k 10k 13 62 31 9 241 ms VC
053 2047 10k 1 58 742 4k 10 55 6 s DIR
054 15k 103k 37k 8k 1962 10k 4k 1215 1233 ms UNDIR
055 16k 149k 74k 12k 1638 10k 5k 1171 886 ms VC
056 2048 31k 15k 1741 1123 12k 6k 893 145 ms VC
057 1024 25k 12k 915 643 11k 5k 545 95 ms VC
058 32k 304k 144k 24k 7k 50k 25k 4k 6 s UNDIR
059 32k 304k 144k 24k 6k 44k 22k 4k 4 s UNDIR
060 32k 272k 116k 21k 7k 47k 23k 4k 6 s UNDIR
061 1023 5k 2 73 514 3k 17 70 2486 ms DIR
062 32k 255k 102k 20k 6k 42k 20k 4k 6 s UNDIR
063 32k 288k 130k 22k 7k 55k 27k 5k 5 s UNDIR
064 2035 25k 10k 1469 1731 17k 8k 1256 354 ms UNDIR
065 32k 255k 102k 20k 5k 38k 18k 3k 4 s UNDIR
066 32k 238k 90k 19k 6k 39k 18k 4k 5 s UNDIR
067 2015 22k 7k 1314 1647 15k 6k 1112 2570 ms UNDIR
068 32k 238k 90k 19k 5k 36k 17k 3k 5 s UNDIR
069 2047 6k 1 68 634 3k 15 64 3 s DIR
070 65k 288k 137k 38k 0 0 0 0 1486 ms VC
071 65k 303k 151k 40k 14 60 30 10 1753 ms VC
072 65k 303k 151k 40k 14 62 31 10 1712 ms VC
073 2040 27k 11k 1526 1735 19k 9k 1301 296 ms UNDIR
074 1024 25k 12k 918 700 12k 6k 602 105 ms VC
075 1023 3k 4 55 388 1893 7 52 1060 ms DIR
076 65k 653k 310k 48k 21k 163k 81k 15k 27 s UNDIR
077 2016 22k 7k 1345 1664 15k 6k 1138 2138 ms UNDIR
078 65k 618k 278k 46k 23k 182k 90k 16k 25 s UNDIR
079 65k 652k 310k 48k 21k 165k 82k 15k 27 s UNDIR
080 64k 548k 220k 42k 20k 138k 66k 13k 24 s UNDIR
081 2048 28k 12k 1570 1731 20k 10k 1322 183 ms UNDIR
082 130k 573k 272k 76k 6 24 12 4 5 s VC
083 131k 603k 301k 80k 84 430 215 56 4 s VC
084 1023 5k 0 73 563 3k 10 71 2918 ms DIR
085 131k 604k 302k 80k 47 214 107 32 5 s VC
086 131k 604k 302k 80k 35 164 82 25 4 s VC
087 1024 23k 10k 842 969 19k 9k 797 217 ms UNDIR
088 2005 22k 8k 1322 1585 14k 6k 1074 1716 ms UNDIR
089 32k 320k 160k 25k 7k 49k 24k 5k 4 s VC
090 2043 27k 11k 1518 1783 20k 9k 1332 270 ms UNDIR
091 32k 321k 160k 25k 6k 46k 23k 4k 3 s VC
092 1023 5k 0 65 548 3k 9 65 3 s DIR
093 4k 62k 28k 3k 3k 48k 24k 2822 604 ms UNDIR
094 1023 3k 6 57 424 2010 8 55 1329 ms DIR
095 883 1799 7 51 243 855 12 46 103 ms DIR

Table A.1.: Effects of reduction with all reduction rules enabled

A. Appendix A.3. Tables 141

Iterative Hitting Set Partial order
Ins. ILP Max SAT Vertex Cover ILP DAGer
051 1461 ms 2233 ms 1617 ms 1478 ms 808 ms
052 501 ms 579 ms 535 ms 446 ms 341 ms
053 14 s 18 min 2062 ms
054 3 s 9 s 3 s 3 s 537 ms
055 3 min 39 s 1985 ms 16 s 992 ms
056 9 min 33 s 6 min 1083 ms
057 8 min 27 s 3 min 1815 ms
058 3 min 32 s 7 min 2755 ms
059 5 min 123 s 23 s 21 s 2494 ms
060 4 min 137 s 18 s 25 s 3 s
061 95 s 89 s
062 64 s 85 s 16 s 18 s 2741 ms
063 7 min 155 s 17 s 35 s 4 s
064 63 s 1991 ms
065 120 s 85 s 12 s 15 s 3 s
066 81 s 76 s 13 s 25 s 4 s
067 85 s 2148 ms
068 52 s 53 s 13 s 22 s 4 s
069 37 s 14 min 6 s
070 3 s 2968 ms 4 s 3 s 1792 ms
071 3 s 3 s 3 s 3 s 1765 ms
072 2903 ms 3 s 3 s 3 s 1482 ms
073 65 s 22 min 1953 ms
074 36 s 6 min 8 s
075 174 s 49 s
076 62 s 52 s
077 173 s 2043 ms
078 65 s 86 s
079 72 s 28 s
080 11 min 55 s 92 s
081 55 s 21 min 4 s
082 17 s 10 s 11 s 10 s 3 s
083 10 s 9 s 8 s 10 s 3 s
084 6 min 3 min
085 10 s 10 s 8 s 10 s 4 s
086 10 s 9 s 7 s 10 s 3 s
087 32 s 3 s
088 139 s 1940 ms
089 4 min 21 s 36 s
090 78 s 2515 ms
091 4 min 175 s 21 s
092 158 s 160 s
093 137 s 14 s
094 27 min
095 23 min

Table A.2.: Performance of individual solving techniques on individual instances

142 Solving DFVS in Theory and Practice · Master Thesis Enna Gerhard

Before reduction After reduction Reduct.
Ins. n m undir. k n m undir. k Time Type
053 2047 10k 1 58 742 4k 10 55 6 s DIR
061 1023 5k 2 73 514 3k 17 70 2486 ms DIR
069 2047 6k 1 68 634 3k 15 64 3 s DIR
075 1023 3k 4 55 388 1893 7 52 1060 ms DIR
084 1023 5k 0 73 563 3k 10 71 2918 ms DIR
092 1023 5k 0 65 548 3k 9 65 3 s DIR
094 1023 3k 6 57 424 2010 8 55 1329 ms DIR
095 883 1799 7 51 243 855 12 46 103 ms DIR

051 32k 246k 116k 21k 69 271 134 45 817 ms UNDIR
054 15k 103k 37k 8k 1962 10k 4k 1215 1233 ms UNDIR
058 32k 304k 144k 24k 7k 50k 25k 4k 6 s UNDIR
059 32k 304k 144k 24k 6k 44k 22k 4k 4 s UNDIR
060 32k 272k 116k 21k 7k 47k 23k 4k 6 s UNDIR
062 32k 255k 102k 20k 6k 42k 20k 4k 6 s UNDIR
063 32k 288k 130k 22k 7k 55k 27k 5k 5 s UNDIR
064 2035 25k 10k 1469 1731 17k 8k 1256 354 ms UNDIR
065 32k 255k 102k 20k 5k 38k 18k 3k 4 s UNDIR
066 32k 238k 90k 19k 6k 39k 18k 4k 5 s UNDIR
067 2015 22k 7k 1314 1647 15k 6k 1112 2570 ms UNDIR
068 32k 238k 90k 19k 5k 36k 17k 3k 5 s UNDIR
073 2040 27k 11k 1526 1735 19k 9k 1301 296 ms UNDIR
076 65k 653k 310k 48k 21k 163k 81k 15k 27 s UNDIR
077 2016 22k 7k 1345 1664 15k 6k 1138 2138 ms UNDIR
078 65k 618k 278k 46k 23k 182k 90k 16k 25 s UNDIR
079 65k 652k 310k 48k 21k 165k 82k 15k 27 s UNDIR
080 64k 548k 220k 42k 20k 138k 66k 13k 24 s UNDIR
081 2048 28k 12k 1570 1731 20k 10k 1322 183 ms UNDIR
087 1024 23k 10k 842 969 19k 9k 797 217 ms UNDIR
088 2005 22k 8k 1322 1585 14k 6k 1074 1716 ms UNDIR
090 2043 27k 11k 1518 1783 20k 9k 1332 270 ms UNDIR
093 4k 62k 28k 3k 3k 48k 24k 2822 604 ms UNDIR

052 16k 77k 38k 10k 13 62 31 9 241 ms VC
055 16k 149k 74k 12k 1638 10k 5k 1171 886 ms VC
056 2048 31k 15k 1741 1123 12k 6k 893 145 ms VC
057 1024 25k 12k 915 643 11k 5k 545 95 ms VC
071 65k 303k 151k 40k 14 60 30 10 1753 ms VC
072 65k 303k 151k 40k 14 62 31 10 1712 ms VC
074 1024 25k 12k 918 700 12k 6k 602 105 ms VC
082 130k 573k 272k 76k 6 24 12 4 5 s VC
083 131k 603k 301k 80k 84 430 215 56 4 s VC
085 131k 604k 302k 80k 47 214 107 32 5 s VC
086 131k 604k 302k 80k 35 164 82 25 4 s VC
089 32k 320k 160k 25k 7k 49k 24k 5k 4 s VC
091 32k 321k 160k 25k 6k 46k 23k 4k 3 s VC

Table A.3.: Overview of properties of instances grouped by instance type

A. Appendix A.3. Tables 143

Iterative Hitting Set Partial order
Ins. ILP Max SAT Vertex Cover ILP DAGer
053 14 s 18 min 2062 ms
061 95 s 89 s
069 37 s 14 min 6 s
075 174 s 49 s
084 6 min 3 min
092 158 s 160 s
094 27 min
095 23 min

051 1461 ms 2233 ms 1617 ms 1478 ms 808 ms
054 3 s 9 s 3 s 3 s 537 ms
058 3 min 32 s 7 min 2755 ms
059 5 min 123 s 23 s 21 s 2494 ms
060 4 min 137 s 18 s 25 s 3 s
062 64 s 85 s 16 s 18 s 2741 ms
063 7 min 155 s 17 s 35 s 4 s
064 63 s 1991 ms
065 120 s 85 s 12 s 15 s 3 s
066 81 s 76 s 13 s 25 s 4 s
067 85 s 2148 ms
068 52 s 53 s 13 s 22 s 4 s
073 65 s 22 min 1953 ms
076 62 s 52 s
077 173 s 2043 ms
078 65 s 86 s
079 72 s 28 s
080 11 min 55 s 92 s
081 55 s 21 min 4 s
087 32 s 3 s
088 139 s 1940 ms
090 78 s 2515 ms
093 137 s 14 s

052 501 ms 579 ms 535 ms 446 ms 341 ms
055 3 min 39 s 1985 ms 16 s 992 ms
056 9 min 33 s 6 min 1083 ms
057 8 min 27 s 3 min 1815 ms
071 3 s 3 s 3 s 3 s 1765 ms
072 2903 ms 3 s 3 s 3 s 1482 ms
074 36 s 6 min 8 s
082 17 s 10 s 11 s 10 s 3 s
083 10 s 9 s 8 s 10 s 3 s
085 10 s 10 s 8 s 10 s 4 s
086 10 s 9 s 7 s 10 s 3 s
089 4 min 21 s 36 s
091 4 min 175 s 21 s

Table A.4.: Performance of solving techniques grouped by instance type

144

List of Figures

1.1. Simplified fictive example of a metabolic network with an optimum solution . . 8
1.2. Processes waiting on each other in a deadlock 9
1.3. Example graph with minimum DFVS . 10
1.4. Example of using DFVS for graph layouts . 11

2.1. Basic graph examples . 15
2.2. Path examples . 18
2.3. A directed graph, split into its subgraphs and undirected structures 18
2.4. Conflicting properties of algorithms . 22
2.5. Overview of reductions from DFVS to other problems 24
2.6. DFVS examples . 26
2.7. A reduction from Vertex Cover to DFVS . 27
2.8. Examples of a minimum Feedback Vertex Set 28
2.9. A reduction from Vertex Cover to Hitting Set 29
2.10. Reduction from DFVS to Hitting Set to Vertex Cover 30

3.1. Applying reduction rules to a DFVS instance and solving it 36
3.2. A log of changes to be applied after solving and reconstructing the solution . . 39
3.3. Possible neighborhood layouts of vertices with degree three 49
3.4. Strong connected components . 56
3.5. Edge not on a directed cycle . 59
3.6. Edge with edges allowed for search and forbidden vertices marked 60
3.7. Sets of disallowed successors on the example from Figure 3.6 61
3.8. Directed minor to exclude for our Edge on Induced Cycle heuristic 63
3.9. Introduce edge if more disjoint paths than vertices in solution exist 69
3.10. Tunnel examples . 71

4.1. A vertex contributing to different potential edges 73
4.2. Undirected forest outside of the underlying Feedback Vertex Set 78
4.3. Maximal inner and outer paths with internal vertices of degree two 79
4.4. The structure of the forest after contracting degree two vertices exhaustively . . 79
4.5. Example of an application of Reduction rule 22 81
4.6. Example of an application of Reduction rule 23 82
4.7. Counterexample with an arbitrarily large graph of solution size two 84

5.1. Iterative solving adding cycle packings having to add almost all cycles 88

List of Figures List of Figures 145

5.2. Example of a linear and an induced partial order 90
5.3. Shared edge on three-cycles . 94
5.4. Examples of Triforces . 96
5.5. Structure of constraints of the combined formulation 98
5.6. Vertex Cover gadgets . 100
5.7. Introducing gadgets to instances . 102
5.8. Branching example . 103
5.9. Fictive branch and reduce tree . 108
5.10. Overview of solving . 110

6.1. Implemented reduction rules . 114
6.2. Effects of applying reduction rules . 115
6.3. Reduction time . 116
6.4. Comparison of our own solving approaches 117
6.5. Comparison of solvers . 120
6.6. Overview of our improved solving approach 123
6.7. Comparison of our improved solving approaches and DAGer 124

146

List of Tables

3.1. Overview of reduction rules . 37

6.1. Fastest completion of solving techniques on instances that were solved 118
6.2. Overview of PACE 2022 exact solver submissions solving 150 instances . . . 119

A.1. Effects of reduction with all reduction rules enabled 140
A.2. Performance of individual solving techniques on individual instances 141
A.3. Overview of properties of instances grouped by instance type 142
A.4. Performance of solving techniques grouped by instance type 143

147

List of Algorithms

2.1. Breadth First Search . 20

2.2. Verifying that a solution is a DFVS . 25

5.1. Iterative Hitting Set generation . 86

5.2. Hitting Set ILP Formulation . 86

5.3. Partial order Extended SAT formulation . 91

5.4. Partial order ILP formulation . 92

5.5. Combined ILP formulation . 97

148

Statutory declaration

The following statements are mandatory and therefore given in German.

Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenenQuellen und Hilfsmittel verwendet habe. Alle Teile meiner Arbeit, die wortwörtlich
oder dem Sinn nach anderen Werken entnommen sind, wurden unter Angabe der Quelle ken-
ntlich gemacht. Gleiches gilt auch für Zeichnungen, Skizzen, bildliche Darstellungen sowie für
Quellen aus dem Internet, dazu zählen auch KI-basierte Anwendungen oder Werkzeuge. Die
Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht. Die
elektronische Fassung der Arbeit stimmt mit der gedruckten Version überein. Mir ist bewusst,
dass wahrheitswidrige Angaben als Täuschung behandelt werden.

Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Universität Bremen
zur dauerhaften Archivierung angeboten.

Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaft-
liche Zwecke von Dritten eingesehen werden darf.

Eingereichte Arbeiten können nach § 18 des Allgemeinen Teil der Bachelor- bzw. der Master-
prüfungsordnungen der Universität Bremen mit qualifizierter Software auf Plagiatsvorwürfe un-
tersucht werden. Zum Zweck der Überprüfung auf Plagiate erfolgt das Hochladen auf den
Server der von der Universität Bremen aktuell genutzten Plagiatssoftware.

Ich bin nichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnichtnicht damit einverstanden, dass die von mir vorgelegte und verfasste Arbeit zum o.g.
Zweck dauerhaft auf dem externen Server der aktuell von der Universität Bremen genutzten Pla-
giatssoftware, in einer institutionseigenen Bibliothek (Zugriff nur durch die Universität Bremen),
gespeichert wird.

	Introduction
	PACE Challenge
	Objective of this thesis
	Structure of this thesis

	Preliminaries
	General graph theoretic notation
	Undirected graphs
	Structures within graphs
	Algorithms

	Complexity Theory
	Important NP-Complete Problems
	Directed Feedback Vertex Set
	Vertex Cover
	Feedback Vertex Set
	Hitting Set
	Satisfiability
	Integer Linear Programs and Linear Programs

	Data Reduction Rules
	Formal notation
	Reduction log
	Visual notation
	Structure of rules entries
	Trivial rules
	Existing data reduction rules
	No predecessor or successor
	Single predecessor or successor
	Dominating bi-directed edge
	Contract isolated paths of length three
	Contract neighbors of degree three vertices
	Crowns
	Single disjoint cycle

	Remove edges not on induced cycles
	Strongly connected components
	Remove directed dead ends
	Remove if there is no directed cycle
	Remove if there is always a shorter cycle
	Remove edges while tracking cycles in predecessors

	Pick cycle dominating vertices
	Pick vertices weakly dominating bi-directed edge
	Strongly dominating cycle
	Weakly dominating cycle

	Other interesting data reduction rules
	Too many internally vertex disjoint paths
	Dominated cliques
	Tail-Biting Worms
	Tunnels

	Recursive application

	Kernelisation
	Existing kernels for DFVS
	A kernel requiring a Feedback Vertex Set as input
	Preparing the graph and creating a first bound
	Bounding vertices of degree zero
	Bounding vertices of degree one
	Bounding vertices of degree greater than three
	Bounding the number of paths
	Bounding the length of paths
	Completing the bound

	New Kernel based on new data reduction rules

	Solving reduced instances
	Adding cycles iteratively
	Linear and partial orders
	Hints
	Bi-directed edges
	Short cycles
	Edge on multiple three-cycles
	Lower bounds of subgraphs
	Cliques

	Combined formulation
	Reduction to Vertex Cover
	Replacing cycles with Hitting Set gadgets
	Optimized gadgets

	Branch and bound
	Upper bounds
	Lower bounds
	Branch and reduce

	Combining the approaches

	Practical Evaluation
	Dataset overview
	Evaluation of reduction rules
	Evaluation of solving techniques
	Comparison with other PACE submissions
	DAGer
	Mount Doom
	G2OAT
	DVFS
	DiVerSeS

	Creating an improved solver

	Conclusion
	Summary
	Further research on Directed Feedback Vertex Set
	Solving other NP-hard problems
	Future practical applications

	Bibliography
	Appendix
	Thanks
	Implementation
	Tables

	List of Figures
	List of Tables
	List of Algorithms
	Statutory declaration

